Keyword: synchrotron
Paper Title Other Keywords Page
TUP047 An Analysis of Optimal Initial Detuning for Maximum Energy-Extraction Efficiency electron, extraction, FEL, undulator 145
 
  • Q.K. Jia
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  For low gain free electron laser (FEL), the phase space evolutions of trapped electrons in the phase bucket are analyzed through calculating their synchrotron oscillation periods, which vary with the initial detuning and initial phase. The optimal initial detuning for the maximum energy-extraction efficiency and the corresponding saturation length are given. The analysis demonstrated that for the low gain case the gain of the strong optical field is about a quarter of that of the weak optical field (small signal gain), and the saturation power larger than that of high gain FEL can be achieved in the resonator of oscillator FEL.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP047  
About • paper received ※ 19 August 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP065 Optimization of a Coherent Undulator Beamline for New Advanced Synchrotron Light Source in Korea undulator, electron, FEL, radiation 206
 
  • I.G. Jeong, P. Buaphad, Y.J. Joo, Y. Kim, H.R. Lee
    University of Science and Technology of Korea (UST), Daejeon, Republic of Korea
  • P. Buaphad, Y.J. Joo, Y. Kim, H.R. Lee
    KAERI, Jeongeup-si, Republic of Korea
  • M.Y. Han, I.G. Jeong, J.Y. Lee, S.H. Lee
    Korea Atomic Energy Research Institute (KAERI), Daejeon, Republic of Korea
 
  Recently, the demand for a new advanced synchrotron light source in Korea is rapidly growing. Six local governments in Korea would like to host the new synchrotron light source project in their own provinces. The new advanced synchrotron light source will be the Diffraction-Limited Storage Ring (DLSR), which is based on the Multi-Bend Achromat (MBA) lattice. For the new synchrotron light source, we would like to build a special 60-m long coherent undulator beamline, which can deliver high-intensity coherent radiation at the hard X-ray region. To design the coherent undulator beamline, we have performed numerous beam dynamics simulations with GENESIS and SIMPLEX codes. In this paper, we report design concepts and those simulation results for the coherent undulator beamline.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP065  
About • paper received ※ 26 August 2019       paper accepted ※ 26 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP037 A Novel One-Dimensional Model for CSR Wakefields wakefield, radiation, synchrotron-radiation, electron 669
 
  • G. Stupakov
    SLAC, Menlo Park, California, USA
 
  The existing 1D models of the coherent synchrotron radiation (CSR) wakefield in free space assume that the longitudinal bunch distribution remains constant when the beam propagates through a magnetic lattice. In this paper, we derive a formula for a 1D CSR wake that takes into account variation of the bunch length along the orbit. The formula is valid for arbitrary curvilinear beam trajectory. We analyze the validity of the 1D model in a typical implementation of an FEL bunch compressor.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP037  
About • paper received ※ 12 August 2019       paper accepted ※ 26 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)