Keyword: space-charge
Paper Title Other Keywords Page
WEP052 Simulation Studies on the Saturated Emission at PITZ laser, gun, simulation, cathode 444
 
  • X. Li, P. Boonpornprasert, Y. Chen, J.D. Good, M. Groß, I.I. Isaev, C. Koschitzki, M. Krasilnikov, S. Lal, O. Lishilin, G. Loisch, D. Melkumyan, R. Niemczyk, A. Oppelt, H.J. Qian, H. Shaker, G. Shu, F. Stephan, G. Vashchenko
    DESY Zeuthen, Zeuthen, Germany
 
  In this paper we report our consideration and simulation on the space charge dominated emission in the L-band photocathode RF gun at the Photo Injector Test facility at DESY in Zeuthen (PITZ). It has been found that the emission curve, which relates the extracted and accelerated bunch charge after the gun to the laser energy, doesn’t agree very well with Astra simulations when the emission is nearly or fully saturated. Previous studies with a core-halo model for a better fit of the experimentally measured laser transverse profile as well as with an improved transient emission model have resulted in a better agreement between experimental data and simulation. A 3D FFT space charge solver including mirror charge and binned energy/momentum has been built, which also allows more emission mechanisms to be included in the future. In this paper, the energy spread during emission was preliminarily analyzed. Experimentally measured emission curves were compared with simulation, showing the effect of the inhomogeneity of the laser on the emission and beam parameters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP052  
About • paper received ※ 20 August 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP003 Arbitrary Order Perturbation Theory for a Time-Discrete Model of Micro-Bunching Driven by Longitudinal Space Charge bunching, FEL, simulation, electron 596
 
  • Ph. Amstutz
    LBNL, Berkeley, California, USA
  • M. Vogt
    DESY, Hamburg, Germany
 
  A well established model for studying the micro-bunching instability driven by longitudinal space charge in ultra-relativistic bunches in FEL-like beamlines can be identified as a time-discrete Vlasov system with general drift maps and Poisson type collective kick maps. Here we present an arbitrary order perturbative approach for the general system and the complete all-orders solution for a special example. For this example we benchmark our theory against our Perron-Frobenius tree-code.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP003  
About • paper received ※ 20 August 2019       paper accepted ※ 29 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP009 Space Charge Field Beam Dynamics Simulations for the THz SASE FEL at PITZ undulator, radiation, simulation, FEL 606
 
  • S.A. Schmid, H. De Gersem, E. Gjonaj
    TEMF, TU Darmstadt, Darmstadt, Germany
  • M. Dohlus
    DESY, Hamburg, Germany
  • M. Krasilnikov
    DESY Zeuthen, Zeuthen, Germany
 
  Funding: This work is supported by the DFG in the framework of GRK 2128.
A proof-of-principle experiment on a THz SASE FEL is under consideration at the Photo Injector Test facility at DESY in Zeuthen (PITZ). One of its options assumes utilization of 4.0 nC bunches at 16.7 MeV [1]. In this operation mode, space charge interaction strongly influences the dynamics of the electron beam inside the undulator. In this contribution, we investigate the beam dynamics in the THz undulator of PITZ using a particle-particle interaction model based on a Lienard-Wiechert approach. We analyze the influence of retardation and radiation fields on the beam dynamics resulting in the microbunching effect. Furthermore, we compute the radiation field and estimate the radiation power at the exit of the undulator. The validity of the underlying numerical models is discussed.
[1] M. Krasilnikov et al., in Proc. ICAP’18, Key West, USA, paper TUPAF23, 2018
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP009  
About • paper received ※ 20 August 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)