Paper | Title | Other Keywords | Page |
---|---|---|---|
WEB03 | Application of Machine Learning to Beam Diagnostics | network, diagnostics, controls, target | 311 |
|
|||
Machine Learning (ML) techniques are widely used in science and industry to discover relevant information and make predictions from data. The application ranges from face recognition to High Energy Physics experiments. Recently, the application of ML has grown also in accelerator physics and in particular in the domain of diagnostics and control. The target is to provide an overview of ML techniques and to indicate beam diagnostics tasks where ML based solutions can be efficiently applied to complement or potentially surpass existing methods. Besides, a short summary of recent works will be given demonstrating the great interest for use of ML concepts in beam diagnostics and latest results of incorporating these concepts into accelerator problems, with the focus on beam optics related application. | |||
![]() |
Slides WEB03 [5.721 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEB03 | ||
About • | paper received ※ 20 August 2019 paper accepted ※ 27 August 2019 issue date ※ 05 November 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEP006 | A PolariX TDS for the FLASH2 Beamline | emittance, electron, photon, FEL | 328 |
|
|||
Transverse Deflecting RF-Structures (TDS) are successfully used for longitudinal diagnostic purposes at many Free-Electron Lasers (FEL) (LCLS, FLASH, EU-XFEL, FERMI). Moreover, by installing a TDS downstream of the FEL undulators and placing the measurement screen in a dispersive section, the temporal photon pulse structure can be estimated, as was demonstrated at LCLS and sFLASH. Here we describe the installation of a variable polarization X-band structure (PolariX TDS [1]) downstream of the FLASH2 undulators. The installation of such a TDS enables longitudinal phase space measurements and photon pulse reconstructions, as well as slice emittance measurements in both planes using the same cavity due to the unique variable polarization of the PolariX TDS.
[1] P. Craievich et al., "Status of the PolariX-TDS Project", in Proc. IPAC’18, Vancouver, Canada (2018) |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP006 | ||
About • | paper received ※ 20 August 2019 paper accepted ※ 27 August 2019 issue date ※ 05 November 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEP050 | Status of Chirped Pulse Laser Shaping for the PITZ Photoinjector | laser, electron, flattop, simulation | 437 |
|
|||
The beam emittance at FEL facilities like European XFEL and FLASH is dominated by the emittance sources in the electron injector. Shaping of the laser pulses that are employed to release electrons from the cathode of a photo injector, was shown in theory to allow improved beam emittance starting from the electron emission process. At the photo injector test facility at DESY in Zeuthen (PITZ) a laser system capable of controlling the temporal and spatial profile of laser pulses is being set up to demonstrate the predicted emittance reduction experimentally. The presentation will show its current capabilities to provide temporally and spatially shaped laser pulses from a pulse shaper operating at infrared (IR) wavelengths. Furthermore, results from a shape preserving conversion into fourth harmonic ultra-violet (UV), as needed for the photo emission process, will be presented. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP050 | ||
About • | paper received ※ 21 August 2019 paper accepted ※ 17 September 2019 issue date ※ 05 November 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THP001 | Steffen Hard-Edge Model for Quadrupoles with Extended Fringe-Fields at the European XFEL | quadrupole, FEL, focusing, linac | 588 |
|
|||
For modeling of linear focusing properties of quadrupole magnets the conventional rectangular model is commonly used for the design and calculations of the linear beam optics for accelerators. At the European XFEL the quadrupole magnets are described using a more accurate Steffen hard-edge model. In this paper we discuss the application of the Steffen approach for the European XFEL quadrupoles and present the examination of the model with the orbit response matrix technique. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP001 | ||
About • | paper received ※ 20 August 2019 paper accepted ※ 25 August 2019 issue date ※ 05 November 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THP054 | Nanosecond Pulse Enhancement in Narrow Linewidth Cavity for Steady-State Microbunching | cavity, laser, simulation, impedance | 697 |
|
|||
Funding: The National Natural Science Foundation of China under Grant No.11875227. In steady-state microbunching (SSMB), nanosecond laser pulse with megawatt average power is required. We build up a theoretic model to enhance such pulse in a narrow linewidth (e.g. kHz level) cavity for this demand, which shows that a mode-locked mechanism in frequency domain should be considered. Simulations indicate that such pulse can be enhanced sufficiently under this condition. And we also propose some experimental schematics to realize it. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP054 | ||
About • | paper received ※ 25 August 2019 paper accepted ※ 22 October 2019 issue date ※ 05 November 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||