Paper | Title | Other Keywords | Page |
---|---|---|---|
TUP006 | The FHI FEL Upgrade Design | FEL, undulator, cavity, dipole | 52 |
|
|||
Since coming on-line in November 2013, the Fritz-Haber-Institut (FHI) der Max-Planck-Gesellschaft (MPG) Free-Electron Laser (FEL) has provided intense, tunable infrared radiation to FHI user groups. It has enabled experiments in diverse fields ranging from bio-molecular spectroscopy to studies of clusters and nanoparticles, nonlinear solid-state spectroscopy, and surface science, resulting in 50 peer-reviewed publications so far. A significant upgrade of the FHI FEL is now being prepared. A second short Rayleigh range undulator FEL beamline is being added that will permit lasing from < 5 microns to > 160 microns. Additionally, a 500 MHz kicker cavity will permit simultaneous two-color operation of the FEL from both FEL beamlines over an optical range of 5 to 50 microns by deflecting alternate 1 GHz pulses into each of the two undulators. We will describe the upgraded FHI FEL physics and engineering design and present the plans for two-color FEL operations in November 2020. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP006 | ||
About • | paper received ※ 20 August 2019 paper accepted ※ 27 August 2019 issue date ※ 05 November 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEP008 | Multi-Beamline Operation at the European XFEL | FEL, timing, electron, undulator | 335 |
|
|||
The European XFEL uses a unique beam distribution scheme to direct electron bunches to its three undulator lines. The accelerator delivers up to 600 microsecond long bunch trains, out of which parts or individual bunches can be selected for photon production in any of the FELs. This contribution gives a brief overview of the kicker-septum scheme facilitating this and highlights how even complex bunch patterns can easily be configured via the timing system. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP008 | ||
About • | paper received ※ 19 August 2019 paper accepted ※ 29 August 2019 issue date ※ 05 November 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEP013 | Fast Kicker System for European XFEL Beam Distribution | FEL, flattop, feedback, septum | 353 |
|
|||
A special feature of the European XFEL X-ray laser is the possibility to distribute the electron bunches of one beam pulse to different free-electron laser (FEL) beam-lines. This is achieved through a combination of kickers and a Lambertson DC septum. The integration of a beam abort dump allows a flexible selection of the bunch pattern at the FEL experiment, while the superconducting linear accelerator operates with constant beam loading. The driver linac of the FEL can deliver up to 600 µs long bunch trains with a repetition rate of 10 Hz and a maximum energy of 17.5 GeV. The FEL process poses very strict requirements on the stability of the beam position and hence on all upstream magnets. It was therefore decided to split the beam distribution system into two kicker systems, long pulse kickers with very stable amplitude (flat-top) and relatively slow pulses and fast stripline kickers with moderate stability but very fast pulses. This contribution gives a brief overview of the fast kicker system. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP013 | ||
About • | paper received ※ 20 August 2019 paper accepted ※ 27 August 2019 issue date ※ 05 November 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEP014 | Long Pulse Kicker for European XFEL Beam Distribution | FEL, flattop, timing, septum | 357 |
|
|||
A special feature of the European XFEL X-ray laser is the possibility to distribute the electron bunches of one beam pulse to different free-electron laser (FEL) beam-lines. This is achieved through a combination of kickers and a Lambertson DC septum. The integration of a beam abort dump allows a flexible selection of the bunch pattern at the FEL experiment, while the superconducting linear accelerator operates with constant beam loading. The driver linac of the FEL can deliver up to 600 µs long bunch trains with a repetition rate of 10 Hz and a maximum energy of 17.5 GeV. The FEL process poses very strict requirements on the stability of the beam position and hence on all upstream magnets. It was therefore decided to split the beam distribution system into two kicker systems, long pulse kickers with very stable amplitude (flat-top) and relatively slow pulses and fast stripline kickers with moderate stability but very fast pulses. This contribution gives a brief overview of the long pulse kicker system. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP014 | ||
About • | paper received ※ 20 August 2019 paper accepted ※ 27 August 2019 issue date ※ 05 November 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEP038 | Commissioning and Stability Studies of the SwissFEL Bunch-Separation System | FEL, electron, photon, operation | 404 |
|
|||
SwissFEL is a linear electron accelerator based, X-ray Free Electron Laser at the Paul Scherrer Institute, Switzerland. It is a user oriented facility capable of producing short, high brightness X-ray pulses covering the spectral range from 1 to 50 Å. SwissFEL is designed to run in two electron bunch mode in order to serve simultaneously two experimental beamline stations (hard and soft X-ray one) at its full repetition rate. Two closely spaced (28 ns) electron bunches are accelerated in one RF macro pulse up to 3 GeV. A high stability resonant kicker system and a Lambertson septum magnet are used to separate the bunches and to send them to their respective beamlines. With the advancement of the construction of the second beamline (Athos) the bunch-separation system was successfully commissioned. In order to confirm that the beam separation process is fully transparent a stability study of the electron beam and the free electron laser in the main beamline (Aramis) was done. | |||
![]() |
Poster WEP038 [0.945 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP038 | ||
About • | paper received ※ 19 August 2019 paper accepted ※ 25 August 2019 issue date ※ 05 November 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THP071 | Progress in High Power High Brightness Double Bunch Self-Seeding at LCLS-II | FEL, undulator, photon, electron | 726 |
|
|||
Funding: Work supported by the U.S. Department of Energy Contract No. DE-AC02-76SF00515. We have previosuly shown that we can generate near TW, 15 fs duration, near transform limited X-ray pulses in the 4 to 8 keV photon energy range using the LCLS-II copper linac, two electron bunches, a 4-crystal monochromator/delay line and a fast transverse bunch kicker. The first bunch generates a strong seeding X-ray signal, and the second bunch, initially propagating off-axis, interacts with the seed in a tapered amplifier undulator, where it propagates on axis. In this paper, we investigate the design of the 4-crystal monochromator, acting also as an X-ray delay system, and of the fast kicker, in preparation of the implementation of the system in LCLS-II. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-THP071 | ||
About • | paper received ※ 20 August 2019 paper accepted ※ 26 August 2019 issue date ※ 05 November 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
FRA01 | FEL Operation at the European XFEL Facility | FEL, operation, photon, electron | 766 |
|
|||
The European XFEL is a SASE FEL based user facility in the metropole region of Hamburg providing hard and soft X-ray photons with extremely high brilliance. The three FEL lines are operated simultaneously and are powered by a superconducting LINAC based on TESLA technology. Average power levels of up to several W have been demonstrated as well for soft and hard X-rays and can be requested by user experiments on day by day basis. The contribution will report on the results of the commissioning within the last two years as well as on the transition to user operation. Typical operation conditions for parallel operation of 3 SASE lines will be discussed. The perspective for the operation with an extended photon energy range, as well as for full power operation with up to 27000 pulses per second will be presented. | |||
![]() |
Slides FRA01 [27.196 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-FRA01 | ||
About • | paper received ※ 20 August 2019 paper accepted ※ 27 August 2019 issue date ※ 05 November 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||