Keyword: FEM
Paper Title Other Keywords Page
TUP019 Regime of Multi-Stage Non-Resonant Trapping in Free Electron Lasers electron, FEL, wiggler, experiment 83
 
  • A.V. Savilov, I.V. Bandurkin, Yu.S. Oparina, N.Yu. Peskov
    IAP/RAS, Nizhny Novgorod, Russia
 
  Funding: This work is supported by the RFBR (grants #18-02-40009, #18-02-00765) and by the IAP RAS Project 0035-2019-0001.
We describe three works united by the idea of the non-resonant regime [1] providing an effective trapping in a beam with a great energy spread. In this regime, the "bucket" corresponding to the resonant electron-wave interaction passes through the electron layer on the energy-phase plane and traps a fraction of electrons. (I) Operability of this regime was demonstrated in the high-efficient 0.8 MeV Ka-band FEM-amplifier [2]. (II) In short-wavelength FELs the multi-stage trapping in several consecutive sections can be organized [3]. In each section a small e-beam fraction is trapped due to a weak electron-wave interaction. However, repetition of this process from section to section involves in the interaction almost the whole e-beam. We describe efficiency enhancement and improving the frequency wave spectrum in multi-stage SASE FELs. (III) The multi-stage amplification of a single-frequency wave signal can provide cooling of the electron bunch. In this regime, tapering of every section is provided such that the "bucket" goes from maximal initial electron energy down to the minimal one and moves down energies of trapped electrons.
[1] A.Savilov et al., Nucl. Instr. Meth. A, vol. 507, p.158, 2003
[2] A.Kaminsky et al., Int. Conf. IRMMW-THz 2018, art. 4057938
[3] S.Kuzikov, A.Savilov, Phys. Plasmas, vol. 25, p.113114, 2018
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUP019  
About • paper received ※ 14 August 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEB04 Few-Femtosecond Facility-Wide Synchronization of the European XFEL laser, FEL, electron, timing 318
 
  • S. Schulz, M.K. Czwalinna, M. Felber, M. Fenner, C. Gerth, T. Kozak, T. Lamb, B. Lautenschlager, F. Ludwig, U. Mavrič, J. Müller, S. Pfeiffer, H. Schlarb, Ch. Schmidt, C. Sydlo, M. Titberidze, F. Zummack
    DESY, Hamburg, Germany
 
  The first facility-wide evaluation of the optical synchronization system at the European XFEL resulted in excellent arrival time stability of the electron bunches at the end of the 2 km long linac, being measured with two individual adjacent femtosecond-resolution bunch arrival time monitors. While each of the monitors is independently linked by a stabilized optical fiber to a master laser oscillator, with one being installed in the injector area and one in the experimental hall, these two reference lasers are tightly synchronized through another few-km long fiber link. Thus, not only the accelerator performance is being benchmarked, but equally the optical synchronization infrastructure itself. Stability on this level can only be achieved by locking the RF for cavity field control to the optical reference and requires an unprecedented synchronization of the master laser oscillator to the main RF oscillator, enabled by a novel RF/optical phase detector. Finally, with the seeders of the experiment’s optical lasers synchronized to the master laser oscillator, first experiments at two independent scientific instruments proved an X-ray/optical timing jitter of few tens of femtoseconds.  
slides icon Slides WEB04 [22.142 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEB04  
About • paper received ※ 20 August 2019       paper accepted ※ 28 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP004 Timing Stability Comparison Study of RF Synthesis Techniques timing, laser, FEL, electron 325
 
  • E. Cano Vargas, F.X. Kärtner
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • A. Berlin, H.P.H. Cheng, A. Dai, J. Derksen, P. Schiepel, K. Şafak
    Cycle GmbH, Hamburg, Germany
 
  Funding: Deutsches Elektronen-Synchrotron (DESY); Cycle GmbH.
High-precision and low-noise timing transfer from a master clock to different end stations of a free-electron laser (FEL) is an essential task.[1] Timing precisions ranging from few tens of femtoseconds to sub-femtoseconds are required for seeded FELs and attosecond science centers. Mode-locked lasers referenced to RF standards are commonly used as master oscillators, due to their superior stability and timing precision, depicting timing jitter in the attosecond range.[2] In this matter, one of the biggest challenges is to transfer the timing stability of mode-locked lasers to RF sources. Here, we compare and contrast two of the most common techniques used for laser-to-RF synthesis in FEL facilities: (i) RF signal extraction from the optical pulse train using photodiodes, and (ii) VCO-to-laser synchronization. Test setups are built to measure both the absolute phase noise of the generated RF signal and the relative timing jitter with respect to the mode-locked laser. Short-term timing jitter values varying between 10 and 100 fs are achieved for different test setups, while long term timing drift ranging to some hundreds of fs due to environmental influence are observed.
[1] M. Xin, K. Shafak and F.X. Kärtner, Optica, vol. 5, no. 12, pp. 1564-1578, 2018.
[2] J. Kim, F.X. Kärtner, Opt. Lett., vol. 32, pp. 3519-3521, 2007.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP004  
About • paper received ※ 20 August 2019       paper accepted ※ 27 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP010 Femtosecond Laser-to-RF Synchronization and RF Reference Distribution at the European XFEL laser, FEL, feedback, linac 343
 
  • T. Lamb, M. Felber, T. Kozak, J. Müller, H. Schlarb, S. Schulz, C. Sydlo, M. Titberidze, F. Zummack
    DESY, Hamburg, Germany
 
  At the European XFEL, optical pulses from a mode-locked laser are distributed in an optical fiber network providing femtosecond stability throughout the accelerator facility. Due to the large number of RF reference clients and because of the expected higher reliability, the 1.3 GHz RF reference signals are distributed by a conventional coaxial RF distribution system. However, the provided ultra-low phase noise 1.3 GHz RF reference signals may drift over time. To remove these drifts, an optical reference module (REFM-OPT) has been developed to detect and correct environmentally induced phase errors of the RF reference. It uses a femtosecond long-term stable laser-to-RF phase detector, based on an integrated Mach-Zehnder amplitude modulator (MZM), to measure and resynchronize the RF phase with respect to the laser pulses from the optical synchronization system with high accuracy. Currently nine REFM-OPTs are permanently operated at the European XFEL, delivering femtosecond stable RF reference signals for critical accelerating field control stations. The operation experience will be reported together with a detailed evaluation of the REFM-OPT performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP010  
About • paper received ※ 20 August 2019       paper accepted ※ 28 August 2019       issue date ※ 05 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)