Paper | Title | Other Keywords | Page |
---|---|---|---|
TUA01 | Parallel Operation of SASE1 and SASE3 at the European XFEL | FEL, operation, electron, undulator | 25 |
|
|||
At the European XFEL a hard X-Ray SASE FEL (SA-SE1) and a soft X-Ray SASE FEL (SASE3) share in series the same electron beamline. This configuration couples the operation conditions for both undulators and their subsequent user experiments in terms of SASE in-tensity and background. We report on our experience in parallel operation and discuss the solutions that enable the operation of both undulators as independently as possible. | |||
![]() |
Slides TUA01 [13.809 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-TUA01 | ||
About • | paper received ※ 26 August 2019 paper accepted ※ 17 October 2019 issue date ※ 05 November 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEP034 | Characterization of FEL Spectra Using Specific Figures of Merit | FEL, real-time, free-electron-laser, software | 388 |
|
|||
By analyzing the spectral content of FEL electron radiation, we can gain new information about the properties of the electron bunch and on the FEL process itself. In this work, we present a peak detection algorithm and its capabilities in characterizing the spectra of seeded FEL.
This work is done in collaboration with FERMI Elettra-Sincrotrone Trieste, Area Science Park, Trieste, Italy |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP034 | ||
About • | paper received ※ 20 August 2019 paper accepted ※ 25 August 2019 issue date ※ 05 November 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEP067 | Development and Commissioning of a Flip Coil System for Measuring Field Integrals | software, quadrupole, undulator, MMI | 484 |
|
|||
Funding: CAPES grant numbers 88881.134183/2016-01; DOE contract DE-AC02-76SF00515 in support of the LCLS-II project; and FAEPEX-UNICAMP grant number 519.292/94550-19. Many techniques for measuring magnetic fields are available for accelerator magnets. In general, methods based upon moving wires are suitable for characterizing field harmonics, and first and second field integrals. The flip coil moving wire technique stands out due to simplicity, speed, precision, and accuracy. We aimed to develop a reliable, fast and precise flip coil system capable of characterizing field integrals in the two transverse axes. The coil was a single turn loop made of insulated beryllium copper wire. The width of the loop was 5 mm. The approach of measuring second field integrals by changing the coil’s width at one of the ends was analyzed and included in the system. High-performance motorized stages performed angular and transverse positioning of the coil, while manual stages were used to stretch the wire, execute fine adjustments in its transverse position, and change coil’s geometry. Initial tests with the Earth’s field and also with a reference magnet of 126 Gauss-centimeter (G.cm) demonstrated that the system achieves repeatability of 0.2 G.cm for a 60-cm long coil. This work was carried out for the LCLS-II project at SLAC. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP067 | ||
About • | paper received ※ 08 August 2019 paper accepted ※ 26 August 2019 issue date ※ 05 November 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEP097 | Operational Model of the Athos Undulator Beamline | polarization, undulator, operation, MMI | 538 |
|
|||
Athos, the new Soft X-ray beamline of SwissFEL, operates 16 Apple X undulators and 15 compact chicanes to implement novel lasing schemes. With the data available after the end of the magnetic measurement campaign (middle 2020), a self-consistent set of equations will be used to summarise all the relevant properties of those devices to start their commissioning. The analytical approach planned will be discussed in great detail and tested with the preliminary experimental data available. Finally, the accuracy of this approach will be evaluated and critically compared to the requirements of the new FEL beamline. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP097 | ||
About • | paper received ※ 27 August 2019 paper accepted ※ 28 August 2019 issue date ※ 05 November 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||