Paper | Title | Page |
---|---|---|
WEP006 | A PolariX TDS for the FLASH2 Beamline | 328 |
|
||
Transverse Deflecting RF-Structures (TDS) are successfully used for longitudinal diagnostic purposes at many Free-Electron Lasers (FEL) (LCLS, FLASH, EU-XFEL, FERMI). Moreover, by installing a TDS downstream of the FEL undulators and placing the measurement screen in a dispersive section, the temporal photon pulse structure can be estimated, as was demonstrated at LCLS and sFLASH. Here we describe the installation of a variable polarization X-band structure (PolariX TDS [1]) downstream of the FLASH2 undulators. The installation of such a TDS enables longitudinal phase space measurements and photon pulse reconstructions, as well as slice emittance measurements in both planes using the same cavity due to the unique variable polarization of the PolariX TDS.
[1] P. Craievich et al., "Status of the PolariX-TDS Project", in Proc. IPAC’18, Vancouver, Canada (2018) |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP006 | |
About • | paper received ※ 20 August 2019 paper accepted ※ 27 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEP048 | FLASH Photoinjector Laser Systems | 430 |
|
||
The free-electron laser facility FLASH at DESY (Hamburg, Germany) operates two undulator beamlines simultaneously for FEL operation and a third for plasma acceleration experiments (FLASHForward). The L-band superconducting technology allows accelerating fields of up to 0.8 ms in length at a repetition rate of 10 Hz (burst mode). A fast kicker-septum system picks one part of the 1 MHz electron bunch train and kicks it to the second beamline such that two beamlines are operated simultaneously with the full repetition rate of 10 Hz. The photoinjector operates three laser systems. They have different pulse durations and transverse shapes and are chosen to serve best for the given user experiment in terms of electron bunch charge, bunch compression, and bunch pattern. It is also possible to operate the laser systems on the same beamline to provide specific double pulses for certain type of experiments. | ||
![]() |
Poster WEP048 [2.642 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-WEP048 | |
About • | paper received ※ 26 August 2019 paper accepted ※ 27 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
FRA03 | FLASH - Status and Upgrades | 776 |
|
||
FLASH, the Free-Electron Laser at DESY in Hamburg was the first FEL user facility in the XUV and soft X-ray range. The superconducting RF technology allows to produce several thousand SASE pulses per second with a high peak and average brilliance. It developed to a user facility with a 1.25 GeV linear accelerator, two undulator beamlines running in parallel, and a third electron beamline containing the FLASHForward plasma wakefield experiment. Actual user operation and FEL research are discussed. New concepts and a redesign of the facility are developed to ensure that also in future FLASH will allow cutting-edge research. Upgrade plans are discussed in the contribution. | ||
![]() |
Slides FRA03 [10.554 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2019-FRA03 | |
About • | paper received ※ 20 August 2019 paper accepted ※ 28 August 2019 issue date ※ 05 November 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |