FLASH Photoinjector Laser Systems.

FLASH **Free-Electron Laser** in Hamburg

FLASH – The Free-Electron Laser at DESY, Hamburg, Germany flash.desy.de S. Schreiber, J. Rönsch-Schulenburg, B. Steffen, C. Grün, K. Klose, DESY

ID 2170 – WEP048 FEL2019, Hamburg, Germany

FLASH features

- Photon wavelength range from XUV to soft X-rays (90 4 nm)
- Uses superconducting TESLA accelerating technology
- Operates in a burst mode with high duty cycle (0.8 ms bursts with 10 Hz)
- Runs two undulator beamlines simultaneously plus a 3rd beamline

	Laser 1	Laser 2	Laser 3
Laser material	Nd:YLF		Yb:YAG
Wavelength	1047 nm		1030 nm
4 th harmonic (UV)	261.7 nm		257.5 nm
Repetition rate	10 Hz		
Burst/train length	800 µs		
Intra-train rate	1 MHz (*)		
Pulses per train	1 800		
Pulse energy UV	50 µJ	50 µJ	1 µJ
Average power (IR)	2 W		10 W
Arrival time jitter	< 40 fs rms		
Long. shape	Gaussian		
Pulse duration (sigma)	4.5 ps	6.5 ps	0.8 - 1.6 ps
Transverse profile	Flat, truncated Gaussian		
Spot size on cathode	1.2 mm diam.(**)		0.8 mm
Charge stability	0.5 % rms		1 % rms
(*) to be adjusted according to	the desired bunch o	or bunch train proper	ties:
1 MHz, 500, 250, 200, 100, 50,	or 40 kHz; 3MHz c	ptional.	

Beamline and combiners

- > All 3 lasers are merged to one beamline using thin Brewster angle polarization plates
- > This allows simultaneous use of all lasers in all beamlines
- > Double pulse generation by:
 - Split-and-delay for THz/SASE runs (21 ns)
 - > Two lasers in one beamline with adjustable distance (from ns to μ s – from one RF bucket to many)

Laser 3

- Passive mode-locked cw oscillator (54) MHz Origami 10 from OneFive)
- > 2 stage Innoslab amplifier (Amphos)
- > Yb:YAG, 10 W, 1 MHz, 600 fs

Laser 2 Oscillator

27 MHz

Amplification stages

Detail of the laser oscillator, Nd:YLF,

1.3 GHz EO-Modulator (active mode-

locked)

Laser 1 Oscillator

108 MHz

Laser 3 AOM picker, frequency conversion, and pulse stretcher layout

- > Transverse shaping (truncated Gaussian)
- > With a plate of 15 apertures (diam. 50 µm) to 2 mm), relay imaged onto the cathode

Slow arrival time feedback using optical X-

Simultaneous operation FLASH1 and FLASH2/FLASH3

- > The bunch train is divided into three parts, for FL1, FL2, and FL3 (not shown)
- Usually the 1st part goes straight to FL1
- > A septum-kicker system kicks the 2nd part to FL2
- > Option: a dipole may guide the beam to FL3 (FLASHForward plasma accelerating experiment)

- > In order to be flexible for the experiments:
 - the train pattern of FL1 and FL2/FL3 may differ
 - > in bunch distance, in number of bunches, in charge, and in compression
- Most beam based feedbacks (charge, arrival time,

- > No longitudinal shaping is applied
- > Pulse length of lasers 1 and 2 are fixed: σ = 4.5 ± 0.1 ps and σ = 6.5 ± 0.1 ps resp.

> Laser 3 special feature:

adjustable pulse length from σ = 0.8 to 1.6 ps

correlation with the FLASH synchronization systems master laser oscillator (MLO)

- Measured stability of the laser oscillator ~40 fs rms
- > OXC provided by J. Müller, S. Schulz, T. Kozak (server)

S. Schulz et al, Nature Comm., 6:5938 doi 10.1038/ncomms6938

S. Schulz et al., Precision Synchronization of the FLASH photoinjector laser, Proc. IPAC'10, Kyoto, Japan WEPEB076

compression) act on the beamlines independently

> Orbit feedbacks in the specific beamline

- Usually laser 1 runs for FLASH2 and laser 2 for FLASH1
- Laser 3 is used for specific experiments especially for ultra-short pulse runs (laser 3 pulse length is shorter)

