Paper |
Title |
Page |
WEB04 |
Few-Femtosecond Facility-Wide Synchronization of the European XFEL |
318 |
|
- S. Schulz, M.K. Czwalinna, M. Felber, M. Fenner, C. Gerth, T. Kozak, T. Lamb, B. Lautenschlager, F. Ludwig, U. Mavrič, J. Müller, S. Pfeiffer, H. Schlarb, Ch. Schmidt, C. Sydlo, M. Titberidze, F. Zummack
DESY, Hamburg, Germany
|
|
|
The first facility-wide evaluation of the optical synchronization system at the European XFEL resulted in excellent arrival time stability of the electron bunches at the end of the 2 km long linac, being measured with two individual adjacent femtosecond-resolution bunch arrival time monitors. While each of the monitors is independently linked by a stabilized optical fiber to a master laser oscillator, with one being installed in the injector area and one in the experimental hall, these two reference lasers are tightly synchronized through another few-km long fiber link. Thus, not only the accelerator performance is being benchmarked, but equally the optical synchronization infrastructure itself. Stability on this level can only be achieved by locking the RF for cavity field control to the optical reference and requires an unprecedented synchronization of the master laser oscillator to the main RF oscillator, enabled by a novel RF/optical phase detector. Finally, with the seeders of the experiment’s optical lasers synchronized to the master laser oscillator, first experiments at two independent scientific instruments proved an X-ray/optical timing jitter of few tens of femtoseconds.
|
|
|
Slides WEB04 [22.142 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-FEL2019-WEB04
|
|
About • |
paper received ※ 20 August 2019 paper accepted ※ 28 August 2019 issue date ※ 05 November 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEP011 |
Longitudinal Intra-Train Beam-Based Feedback at FLASH |
346 |
|
- S. Pfeiffer, Ł. Butkowski, M.K. Czwalinna, B. Dursun, C. Gerth, B. Lautenschlager, H. Schlarb, Ch. Schmidt
DESY, Hamburg, Germany
|
|
|
The longitudinal intra-train beam-based feedback has been recommissioned after major upgrades on the synchronization system of the FLASH facility. Those upgrades include: new bunch arrival time monitors (BAMs), the optical synchronization system accommodating the latest European XFEL design based on PM fibers, and installation of a small broadband normal conducting RF cavity. The cavity is located prior to the first bunch compressor at FLASH and allows energy modulation bunch-by-bunch (1 us spacing) on the per mille range. Through the energy dependent path length of the succeeding magnetic chicane the cavity is used for ultimate bunch arrival time corrections. Recently the RF cavity operated 1 kW pulsed solid-state amplifier was successfully commissioned. First tests have been carried out incorporating the fast cavity as actuator together with SRF stations for larger corrections in our intra-train beam-based feedback pushing now arrival time stabilities towards 5 fs (rms). The latest results and observed residual instabilities are presented.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-FEL2019-WEP011
|
|
About • |
paper received ※ 20 August 2019 paper accepted ※ 17 September 2019 issue date ※ 05 November 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEP012 |
THz Spectroscopy with MHz Repetition Rates for Bunch Profile Reconstructions at European XFEL |
350 |
|
- N.M. Lockmann, C. Gerth, B. Schmidt, S. Wesch
DESY, Hamburg, Germany
|
|
|
The European X-ray Free-Electron Laser generates most powerful and brilliant X-ray laser pulses. Exact knowledge about the longitudinal electron bunch profile is crucial for the operation of the linear accelerator as well as for photon science experiments. The only longitudinal diagnostic downstream of the main linac is based on spectroscopy of diffraction radiation (DR). The spectral intensity of the DR in the THz and infrared regime is monitored by a four-staged grating spectrometer and allows non-invasive bunch length characterization based on form factor measurements in the range 0.7 - 60 THz. As the readout and signal shaping electronics of the spectrometer allow MHz readout rates, the longitudinal bunch profile of all bunches inside the bunch train can be characterized non-invasively and simultaneously to FEL operation. In this paper, form factor measurements along the bunch train will be described and presented as well as the resulting reconstructed current profiles.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-FEL2019-WEP012
|
|
About • |
paper received ※ 20 August 2019 paper accepted ※ 29 August 2019 issue date ※ 05 November 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEP015 |
Electro-Optical Bunch Length Detection at the European XFEL |
360 |
|
- B. Steffen, M.K. Czwalinna, C. Gerth
DESY, Hamburg, Germany
- S. Bielawski, C. Evain, E. Roussel, C. Szwaj
PhLAM/CERCLA, Villeneuve d’Ascq Cedex, France
|
|
|
The electro-optical bunch length detection system based on electro-optic spectral decoding has been installed and is being commissioned at the European XFEL. The system is capable of recording individual longitudinal bunch profiles with sub-picosecond resolution at a bunch repetition rate of 1.13MHz . Bunch lengths and arrival times of entire bunch trains with single-bunch resolution have been measured as well as jitter and drifts for consecutive bunch trains. In addition, we are testing a second electro-optical detection strategy, the so-called photonic time-stretching, which consists of imprinting the electric field of the bunch onto a chirped laser pulse, and then "stretching" the output pulse by optical means. As a result, we obtain is a slowed down "optical replica" of the bunch shape, which can be recorded using a photodiode and GHz-range acquisition. These tests are performed in parallel with the existing spectral decoding technique based on a spectrometer in order to allow a comparative study. In this paper, we present first results for both detection strategies from electron bunches after the second bunch compressor of the European XFEL.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-FEL2019-WEP015
|
|
About • |
paper received ※ 24 August 2019 paper accepted ※ 28 August 2019 issue date ※ 05 November 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEP035 |
NIR Spectrometer for Bunch-Resolved, Non-Destructive Studies of Microbunching at European XFEL |
392 |
|
- S. Fahlström, M. Hamberg
Uppsala University, Uppsala, Sweden
- C. Gerth, N.M. Lockmann, B. Steffen
DESY, Hamburg, Germany
|
|
|
At the European X-ray Free Electron Laser high brilliance femtosecond FEL radiation pulses are generated for user experiments. For this to be achieved electron bunches must be reliably produced within very tight tolerances. In order to investigate the presence of micro-bunching, i.e. charge density variation along the electron bunch with features in the micron range, a prism-based NIR spectrometer with an InGaAs sensor, sensitive in the wavelength range 900 nm to 1700 nm was installed. The spectrometer utilizes diffraction radiation (DR) generated at electron beam energies of up to 17.5 GeV. The MHz repetition rate needed for bunch resolved measurements is made possible by the KALYPSO line detector system, providing a read-out rate of up to 2.7 MHz. We present the first findings from commissioning of the NIR spectrometer, and measurements on the impact of the laser heater system for various bunch compression settings, in terms of amplitude and bunch-to-bunch variance of the NIR spectra as well as FEL pulse energy.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-FEL2019-WEP035
|
|
About • |
paper received ※ 20 August 2019 paper accepted ※ 29 August 2019 issue date ※ 05 November 2019 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|