Author: Wang, D.
Paper Title Page
MOC04
Status of Dalian Coherent Light Source  
 
  • W.Q. Zhang, D.X. Dai, G.L. Wang, G.R. Wu, X.M. Yang
    DICP, Dalian, People's Republic of China
  • S. Chen, C. Feng, D. Wang, M. Zhang, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
 
  Funding: DCLS is a joint project of Dalian Institute of Chemical Physics (DICP) and Shanghai Institute of Applied Physics (SINAP), CAS. It is supported by National Natural Science Foundation of China (21127902)
A Free Electron Laser with high brightness, ultrafast laser pulses in the vacuum ultraviolet (VUV) wavelength region is an ideal light source for excitation of valence electrons and ionization of molecular systems with very high efficiency. it is quite helpful for studies of important dynamic processes in physical, chemical and biological systems. Dalian Coherent Light Source (DCLS) plans to deliver optical beam from 50-150nm in picoseconds or 100 femtoseconds for such research. High gain harmonic generation is the perfect choice in VUV FEL for narrow bandwidth, stable power and low cost due to fewer undulators. After eight months of installation and machine commissioning, a 300-MeV electron beam was achieved with peak current of more than 300A, and the emittance was less than 1.5 mm.mrad. The FEL power for individual pulse at 133nm approached more than 200uJ with 266nm seed laser on Jan. 2017. The gain curve and spectrum of HGHG & SASE FEL was measured, and tapering undulator helps increase the power by almost 100% when the FEL output saturated. The user experiment will start on June 2017. It is open for good proposals from the whole world.
 
slides icon Slides MOC04 [9.706 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOD05
Status of the SXFEL Facility  
 
  • B. Liu, G.P. Fang, M. Gu, Q. Gu, Y.B. Leng, D. Wang, L. Yin, Z.T. Zhentang
    SINAP, Shanghai, People's Republic of China
 
  The Shanghai Soft X-ray Free-Electron Laser facility (SXFEL) is being developed in two steps, the test facility SXFEL-TF and the user facility SXFEL-UF. The SXFEL-TF, which will generate 8.8 nm FEL radiation with the two-stage cascaded HGHG-HGHG or EEHG-HGHG scheme, is under commissioning at the SSRF campus. In the meantime, The SXFEL-UF, with designed wavelength in the water window region, began construction in November 2016, based on upgrading the linac energy to 1.5 GeV and building a second undulator line and five experimental end-stations. Status and future plan of the SXFEL is presented here.  
slides icon Slides MOD05 [15.631 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP024 Simulation and Optimization for Soft X-Ray Self-Seeding at SXFEL User Facility 87
 
  • K.Q. Zhang, C. Feng, D. Wang, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
 
  The simulation and optimization studies for the soft x-ray self-seeding experiment at SXFEL have been presented in this paper. Some critical physical problems have been intensively studied to help us obtain a more stable output and a clearer spectrum. The monochromator is optimized considering various unideal conditions such as the reflection rate, diffraction rate and the roughness of the grating and the mirrors. An integrated self-seeding simulation is also presented. The calculation and simulation results show that the properties of the self-seeding can be significantly improved by using the optimized design of the whole system and the evaluation of grating monochromator shows that the presented design is reliable for soft x-ray self-seeding experiment at SXFEL.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-MOP024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP055 SCLF: An 8-GeV CW SCRF Linac-Based X-Ray FEL Facility in Shanghai 182
 
  • Z.T. Zhao, D. Wang, L. Yin
    SINAP, Shanghai, People's Republic of China
  • Z.H. Yang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  The Shanghai Coherent Light Facility (SCLF) is a newly proposed high repetition-rate X-ray FEL facility, based on an 8-GeV CW superconducting RF linac. It will be located at Zhangjiang High-tech Park, close to the SSRF campus in Shanghai, at the depth of ~38m underground and with a total length of 3.1 km. Using 3 phase-I undulators, the SCLF aims at generating X-rays between 0.4 and 25 keV at rates up to 1MHz. This paper describes the design concepts of this hard X-ray user facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-MOP055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEP063 A Two-in-One Type Undulator 547
 
  • D. Wang, H.X. Deng, Z. Jiang
    SINAP, Shanghai, People's Republic of China
 
  Funding: This work is supported by the Ministry of Science and Technology of China.
The typical X-ray free electron lasers have long tunnels to accommodate high energy electron linear accelerator and long undulator line to produce intense coherent radiations at very short wavelengths. The number of undulator lines is limited by the available space in the tunnel. This is especially true for those facilities that adopt underground tunnels or utilize the existing tunnels originally built for other purpose. This work explored the possibility to better use the tunnel space for accommodating more FEL undulator lines by designing a new type of undulator structure.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-WEP063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)