Author: Nagaitsev, S.
Paper Title Page
FRA03
Towards High-Efficiency Industrial FELs  
 
  • A.Y. Murokh
    RadiaBeam, Santa Monica, California, USA
  • P. Musumeci
    UCLA, Los Angeles, California, USA
  • S. Nagaitsev
    Fermilab, Batavia, Illinois, USA
  • S.D. Webb
    RadiaSoft LLC, Boulder, Colorado, USA
  • A. Zholents
    ANL, Argonne, Illinois, USA
 
  Funding: DOE Grant No. DE-SC0017102
Free Electron Lasers have achieved prominence as the X-ray light source technology for research applications, but their industrial potential remains largely unexplored, even though FELs could reach wavelength coverage and powers unattainable by active media sources. In response to this challenge, we developed the TESSA (tapering-enhanced stimulated superradiant amplifier) FEL scheme, which enables as much as 50% single-pass beam-to-light energy-conversion efficiency. With strongly tapered helical undulator and stimulated rapid deceleration, TESSA offers an order-of-magnitude improvement over all existing high-efficiency FEL paradigms and beyond the limit of many conventional lasers. The proof-of-concept was recently demonstrated by UCLA in a pilot experiment at 10-μm wavelength, where 35% deceleration efficiency has been achieved in a 50-cm wiggler. The next steps discussed herein, include: the ongoing development of the TESSA high gain amplifier at UV wavelength; a planned transition to SCRF linac driven TESSA oscillator to reach high average powers; and eventually a development of the EUV TESSA oscillator for industrial applications in the semiconductor industry.
 
slides icon Slides FRA03 [3.317 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)