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Industrial Lasers

e Industrial lasers play critical role in modern
manufacturing, materials processing,
printing, and other high throughput
industrial processes =

e $3.5 billion industry in 2017
* $1.3 billion micro-materials segment (semiconductor industry,

fine materials processing) represents high added value
applications and is rapidly growing (~20% year over year)

2015__| 2016 est._| 2017 proj;

Marking S 543 S 560 S 569
Marco-materials $1,428 $1,492 S 1,565
Micro-materials S895 S 1,105 S 1,299
Total S 2,866 S 3,157 S 3,432

http://www.industrial-lasers.com/articles/print/volume-32/issue-1/features/industrial-
lasers-continue-solid-revenue-growth-in-2016.html



Industrial Applications

FEL technology is unique due to its scalability to any desired
operating wavelength from THz to X-rays

At shorter wavelengths (< 100 nm), outside the range of state-of-the-
art industrial lasers, FEL can fulfill the needs of growing micro-
material processing segment

Semiconductor industry HVM offers a prime example of high added
value application (EUV lithography), where there is a demand for
short wavelengths light sources on a massive scale

EUVL light source at 13.5 nm illustrates FEL industrial potential
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EUVL challenge

EUVL process implies ultraprecise projection of the mask image on
wafer in a high throughput setting (>120 wph per scanner)

Reflective optics at EUV are far from perfect (R < 70%), so high power
EUV light source is required (250 W in the intermediate focus).

Development of high power laser produced plasma (LPP) source was a
monumental effort, and only recently achieved 250 W target

LPP is expensive (~$100 million per scanner w/10-20 scanners per
foundry, plus high operating cost)
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Possibility for FEL EUVL source

e FEL @ 13.5 nmin theory has a number of advantages compare to LPP:
= No media, no heat and no contamination

= Scalable to non-granular design (one source per foundry instead of one
source per scanner)

= Consistent with the cost and scale of the modern foundry facilities

 To compete with LPP, FEL have to offer significant cost advantages, to
compensate the risks associated with the new technology

Free-Electron Lasers as an Alternative
to LPP
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Industrial FEL

Industrial applications require improvements to the FEL cost
efficiency by 1-2 orders of magnitude

One approach is beam energy recuperation (SCRF CW + ERL)
Another approach is a major improvement to FEL efficiency



FEL efficiency: lessons from Inverse FEL

In a conventional SASE FEL the electrons-
photons energy exchange rate peaks (near
saturation) at about ~ 1 MeV/m

UCLA experiment on RUBICON IFEL
achieved ~ 100 MeV/m acceleration

In IFEL, e-beam and laser exchange energy
in vacuum, thus the process is reversible

100 MeV/m in-vacuum decelerator would
make a very efficient radiator, so can we
design FEL which operates as IFEL in
reverse?

IFEL experiments demonstrated that
strong energy exchange and very high
efficiency FEL schemes are possible within
the state of the art technological
framework

High power
laser
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In an IFEL the electron beam absorbs energy from
a radiation field.
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UCLA results from RUBICON experiments

J. Duris et al, Nature Comm. 5, 4928, 2014
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TESSA

Inverse IFEL = TESSA (Tapering Enhanced Stimulated Superradiant
Amplification)

Requires seed pulse of high intensity (larger than P.,;)

Tapering is optimized using GIT algorithm (Genesis Informed Tapering)
developed at UCLA for IFEL
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TESSA at EUV

* GIT simulations of TESSA at EUV

 E-beam decelerates from 1 GeV to 320 MeV in 23 m undulator,

* Laser power increases from ~ 5 GW seed to > 1 TW at the output

* W/capture ~ 80%, the overall energy efficiency > 50% is possible

* Sensitive to peak current (4 kA for this working point, may not be easy

to achieve at 1 GeV energy)

5 GW seed does not exist (but can be generated by refocusing SASE or

in an oscillator)
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TESSA proof-of-concept experiment

Numerical studies at 13.5 nm are
very promising

Pilot experimental test was carried
out by UCLA at BNL ATF at 10 um

Demonstrated > 30% energy
extraction from the electron beam in
a 50 cm undulator !
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Double buncher experiment

Double buncher enabled improving IFEL capture to >80%

Recently demonstrated by N. Sudar et al.

electron beam

Demonstration of cascaded modulator-chicane micro-bunching of a relativistic

N. Sudar, P. Musumeci, I. Gadjev, Y. Sakai, S. Fabbri
Particle Beam Physics Laboratory,
Department of Physics and Astronomy University of California Los Angeles
Los Angeles, California 90095, USA

M. Polyanskiy, I. Pogorelsky, M. Fedurin, C. Swinson, K. Kusche, M. Babzien, M. Palmer

)

Accelerator Test Facility Brookhaven National Laboratory
Upton, New York 11973, USA
(Dated: August 21, 2017)
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TESSA-266

e So far, TESSA concept has been developed, and demonstrated at
10 um, including efficient beam capture with the double buncher

* Next goal is to show high gain amplification and study system
dynamics and optimization experimentally at a shorter (and friendlier)
wavelength (266 nm)
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* The site of the experiment is LEA tunnel at Argonne (former LEUTL)

 Athorough design study for TESSA-266 is underway in collaboration
with UCLA, Argonne, and RadiaSoft



TESSA-266

Start to end simulations are in progress

The goal is to reach 15% FEL efficiency in 4
meter undulator at 266 nm
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phase in Summer 2018

TESSA Electron Beam Requirements

Property Value
Energy 300 MeV
Energy Spread 0.02% to 0.1 %
Peak Current 1kA
Emittance (Normalized) 2 pm

spot size (rms) 30 pm to 40 um
By 0.54m to 1m

Courtesy of Youna Park (UCLA)
and Chris Hall (RadiaSoft)



Road Map

Beyond TESSA-266 we have to show high average power and high
efficiency oscillator configuration

Considering the possibility of moving TESSA-266 to Fermilab to
demonstrate oscillator regime with SCRF linac

The ultimate goal is TESSA at EUV in a high duty cycle mode
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Conclusions and Acknowledgement

The advances in FEL and accelerator science and technology open up
possibilities for industrial grade systems

More specifically, a possibility of EUV FEL for semiconductor industry
has triggered important discussions about industrial FEL efficiency,
reliability and architecture

TESSA is a novel approach to develop very high efficiency FEL, and
experimental validation is in progress
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