Paper | Title | Page |
---|---|---|
MOP051 | Polish In-Kind Contribution to European XFEL: Status in Summer 2017 | 166 |
|
||
In the years 2010-2017, some of the Polish research institutes took responsibility of production and delivery of certain components or test procedures for the EU-XFEL sc linear electron accelerator and elements of slow control systems for the first six XFEL experimental instruments. The presentation summarizes the output of the work on design and manufacturing of cryogenic transfer lines for supercritical helium transport and two vertical cryostats for low-power acceptance tests of sc cavities. The cryogenic installations were prepared by Wroclaw University of Science and Technology and its subcontractors. A team of Institute of Nuclear Physics in Cracow was in charge of preparation and performance of acceptance tests for XFEL sc cavities, accelerator modules and sc magnets. Two teams of National Centre for Nuclear Research (NCBJ)in Świerk were involved in the project. One of them was responsible for design, manufacturing, testing and delivery of 1648 high-order mode couplers, 824 pick-up antennae and 108 beam-line absobers. The other NCBJ group was obliged to deliver 200 modules containing programmable logic controller terminals to be used at the ends of SASE x-ray beam lines. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-MOP051 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEP021 | Preliminary Results of the Dark Current Modelling for the Polfel Superconducting Lead Photocathode | 463 |
|
||
Preparation for the construction of Polish Free Electron Laser (POLFEL) will begin shortly at National Centre for Nuclear Research (NCBJ) in Warsaw. POLFEL is planned as a fourth-generation light source driven by a superconducting (sc) electron accelerator. The concept includes an all-superconducting injector with a thin-film lead sc photocathode, dedicated to continuous wave or long-pulse linac operation. One of the issues which emerges in connection with operation of high-gradient electron guns furnished with dismountable photocathode plugs is the dark current emitted from the cathode surface inhomogeneities. The dark current usually degrades accelerator performance. The purpose of this paper is to present preliminary investigation results of the dark current generation in the electron gun with a thin lead layer deposited on a niobium plug. Specific features of geometric configuration like rounded plug edges, a gap between the plug and the back gun wall as well as cathode surface roughness have been taken into account for the electron field emission and RF field calculations. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-WEP021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |