Paper | Title | Page |
---|---|---|
MOP038 | Overview of the Soft X-Ray Line Athos at SwissFEL | 125 |
|
||
The Athos line will cover the photon energy range from 250 to 1900 eV and will operate parallel to the hard x-ray line Aramis of SwissFEL. Athos consists of fast kicker magnets, a dog-leg transfer line, a small linac and 16 APPLE undulators. The Athos undulators follow a new design: the so-called APPLE X design where the 4 magnet arrays can be moved radially in a symmetric way. Besides mechanical advantages of such a symmetric distribution of forces, this design allows for easy photon energy scans at a constant polarization or for the generation of transverse magnetic gradients. Another particularity of the Athos FEL line is the inclusion of a short magnetic chicane between every undulator segment. These chicanes will allow the FEL to operate in optical klystron mode, high-brightness SASE mode, or superradiance mode. A larger delay chicane will split the Athos line into two sections such that two colors can be produced with adjustable delay. Finally a post undulator transverse deflecting cavity will be the key tool for the commissioning of the FEL modes. The paper will present the current status of this four years project started in 2017. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-MOP038 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUP053 | The ACHIP Experimental Chambers at PSI | 336 |
|
||
Funding: Gordon and Betty Moore Foundation The Accelerator on a Chip International Program (ACHIP) is an international collaboration, funded by the Gordon and Betty Moore Foundation, whose goal is to demonstrate that a laser-driven accelerator on a chip can be integrated to fully build an accelerator based on dielectric structures. PSI will provide access to the high brightness electron beam of SwissFEL to test structures, approaches and methods towards achieving the final goal of the project. In this contribution, we will describe the two interaction chambers installed on SwissFEL to perform the proof-of-principle experiments. In particular, we will present the positioning system for the samples, the magnets needed to focus the beam to sub-micrometer dimensions and the diagnostics to measure beam properties at the interaction point. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-FEL2017-TUP053 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |