Keyword Index: A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W   X

storage-ring

Paper Title Other Keywords Page
TUOC001 In-Vacuum Undulators undulator, vacuum, radiation, x-ray 370
 
  • T. Tanaka
    RIKEN Spring-8, Hyogo
  • T. Bizen, D. Iwaki, X. Marechal, T. Seike, R. Tsuru
    JASRI/SPring-8, Hyogo
  • T. Hara, H. Kitamura
    RIKEN Spring-8 Harima, Hyogo
  
 

In-vacuum undulators are now widely used in lots of SR facilities to provide highly-brilliant hard x-rays not only in large-scale facilities such as SPring-8, ESRF and APS, but also in medium-scale facilities with an electron energy up to 3 GeV. In addition, the SCSS (SPring-8 Compact SASE Source) project is going to adopt the in-vacuum undulator not only for reducing the electron energy to achieve angstrom X-ray FEL but also for commissioning and alignment of components in the undulator line that takes advantage of variable vacuum gap (physical aperture for the electron beam). In this talk, overview of technologies required for development of the in-vacuum undulator will be presented together with practical examples. In addition, ongoing R&Ds at SPring-8 (cryogenic undulator, in-situ field measurement system) will be described in brief.

  
    
TUOC004 Peak Fields of Nb3Sn Superconducting Undulators and a Scaling Law undulator, synchrotron, electron, microtron 387
 
  • S.H. Kim
    ANL, Argonne, Illinois
  
 

Funding: Work supported by the U.S. Department of Energy under Contract No. W-31-109-ENG-38.

The peak fields on the beam axis and the maximum fields in the conductor of Nb3Sn superconducting undulators (SCUs) were calculated for an undulator period length of 16 mm. Using a simple scaling law for SCUs [1], the peak fields, as well as the conductor maximum fields and the current densities, were calculated for a period range of 8 to 32 mm. The critical current densities of commercially available Nb3Sn superconducting strands were used for the calculations. The achievable peak fields are limited mainly by the flux-jump instabilities at low fields. The possible or feasible peak field will also be compared with that achieved in prototype development of SCUs.

[1] S. H. Kim, Nucl. Instrum. Methods A, accepted for publication.

  
    
THPP001 SRFEL Linewidth Narrowing in the Ultraviolet laser, fel, cavity, electron 447
 
  • D. Garzella
    CEA/Saclay, Gif-sur-Yvette
  • C. Bruni
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex
  • M.-E. Couprie
    CEA/DSM/DRECAM/SPAM, Gif-sur-Yvette
  • G. De Ninno, B. Diviacco, M. Marsi, M. Trovo
    ELETTRA, Basovizza, Trieste
  
 

The ELETTRA Storage Ring FEL succeded in operating in the Ultraviolet range, around 350 nm, with an etalon Fabry Perot inserted in the optical cavity. The high vacuum vessel, integrating a totally motorized control system for the principal degrees of freedom of the silica plate, allowed to obtain the laser oscillation, showing a reduction of the spectral linewidth by more than an order of magnitude. Temporal analysis by a double sweep streak camera showed also a broadening of the temporal pulse width. These major results are here exposed and compared with a numerical analysis and the Storage Ring FEL dynamics theory.

  
    
THPP002 Detuning Curve Analysis on the UVSOR2 Free-Electron Laser laser, electron, fel, energy-spread 451
 
  • M. Labat, M.-E. Couprie
    CEA/DSM/DRECAM/SPAM, Gif-sur-Yvette
  • M. Hosaka, M. Katoh, A. Mochihashi
    UVSOR, Okazaki
  • Y. Takashima
    Nagoya University Graduate School of Engineering, Nagoya
  
 

Storage Ring Free-Electron Laser dynamics and behaviour can be explored versus the detuning, i.e. a small difference between the frequencies of revolution of the electron bunches, and of the optical pulse circulating into the optical cavity. In fact, it provides situations ranging from the maximum initial gain over losses conditions to threshold ones. Systematic measurements of the UVSOR2 detuning curves have been performed. A complete detuning curve gives the intensity of the FEL versus the detuning. On such a plot, one can distinguish five distinct zones: three corresponding to continuous modes of emission for the FEL, and two pulsed modes. Each zone can then be described with its width and period for the pulsed modes. Streak camera also provides a full characterisation of the FEL versus detuning: position of the centre of mass of the laser, bunch lengthening. The energy spread is deduced from the electron beam transverse sizes. The analysis of the FEL behaviour versus detuning is compared with simulations performed with LAS. The detuning behaviour is then illustrated under different cases (current, control of the pulsed zone, chromatic or achromatic electron-beam optics).

  
    
THPP006 Coherent Harmonic Generation using the Elettra Storage-Ring Optical Klystron: A Numerical Analysis electron, laser, energy-spread, fel 459
 
  • F. Curbis, F. Curbis
    Universita degli Studi di Trieste, Trieste
  • G. De Ninno
    ELETTRA, Basovizza, Trieste
  
 

Coherent harmonic generation can be obtained by means of frequency up-conversion of a high-power external laser focused into the first undulator of an optical klystron. The standard configuration is based on a single-pass device, where the seed laser is synchronized with an electron beam entering the first undulator of the optical klystron after being accelerated using a linear accelerator. As an alternative, the optical klystron may be installed on a storage ring, where it is normally used as interaction region for an oscillator free-electron laser. In this case, removing the optical cavity and using an external seed, one obtains a configuration which is similar to the standard one but also presents some peculiar characteristics. In this paper we investigate the possibility of harmonic generation using the Elettra storage-ring optical klystron. We explore different experimental set-ups varying the beam energy, the seed characteristics and the strength of the optical-klystron dispersive section. We also study the performance sensitivity to fluctuations of some beam parameters and the coherent/incoherent signal ratio for different harmonics. Numerical simulations are performed using different 3-D numerical codes.

  
    
THPP011 Real-Time Observation of Surface Chemical Reactions with FEL-Induced Photoelectron Emission Microscopy fel, klystron, laser, electron 467
 
  • H. Ogawa, N. Sei, K.W. Watanabe, K. Y. Yamada, M.Y. Yasumoto
    AIST, Tsukuba, Ibaraki
  
 

Funding: This study was financially supported by the Budget for Nuclear Research of the Ministry of Education, Culture, Sports, Science and Technology, based on the screening and counseling by the Atomic Energy Commission, Japan.

At AIST, we have been making an effort to obtain FELs with an ultra-wide wavelength range from the vacuum ultraviolet (VUV) to the infrared (IR) on a compact storage ring NIJI-IV. Recently, performance of the NIJI-IV FEL was improved at the deep UV (DUV) around 200 nm and it became possible to make real-time observation of chemical reactions on the transition metal surfaces using the photoelectron emission microscopy (PEEM) combined with the DUV FELs. To observe dynamic behavior of the chemical reactions in detail, the FEL-PEEM system is being improved by optimizing experimental conditions. The performance of the system and the experimental results will be presented.

  
    
THPP012 Recent Progress of the NIJI-IV VUV/IR FEL fel, cavity, electron, linac 469
 
  • N. Sei, H. Ogawa, K.W. Watanabe, K. Y. Yamada, M.Y. Yasumoto
    AIST, Tsukuba, Ibaraki
  
 

Funding: This work was supported by the Budget for Nuclear Research of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Free electron lasers (FELs) are being developed in a broad wavelength region from the VUV to the IR with the compact storage ring NIJI-IV at AIST. In the DUV and VUV regions, the FEL is used as an intense light source for real-time surface observation with the photoelectron emission microscopy. To extend the application field of the NIJI-IV FEL, for example to the structural analysis of proteins, experiments to obtain FEL oscillations at the wavelength below 195 nm are going on. In addition, a 3.6-m optical klystron, ETLOK-III, for developing infrared FELs has been installed in the north straight section of the NIJI-IV. Fundamental and higher harmonic spontaneous emissions from the ETLOK-III were observed in the visible and near-infrared regions. It was expected that the FEL gain for the 3rd harmonics exceed 5%. In the presentation, we will report the recent results of the VUV and IR FEL experiments.

  
    
THPP013 Operation of the European FEL at ELETTRA Below 190 nm: A Tunable Laser Source for VUV Spectroscopy fel, lasing, laser, photon 473
 
  • G. De Ninno, E. Allaria, F. Curbis, M.B. Danailov, B. Diviacco, M. Marsi, M. Trovo
    ELETTRA, Basovizza, Trieste
  • M. Coreno
    CNR - IMIP, Trieste
  • S. Günster, D. Ristau
    Laser Zentrum Hannover, Hannover
  
 

Thanks to an intensive technological effort in the framework of the EEC Contract HPRI CT-2001-50025 (EUFELE), the European FEL at ELETTRA was able to break the previous record for the shortest wavelength of an FEL oscillator. Novel solutions were adopted for multilayer mirrors to allow FEL operation in the wavelength region between 160 and 190 nm, which is one of the main targets of the project. The characteristics of the FEL pulses measured at 176 nm (spectral profiles, high intensity, meV bandpass, MHz repetition rate) make it a competitive light source for spectroscopy, in particular for fluorescence studies in the VUV spectral range. Proof of principle experiments have been performed on different types of silica glasses, yielding information on the mechanisms of light absorption in this material.

  
    
THPP014 Progress in Development of Kharkov X-Ray Generator Nestor laser, x-ray, injection, cavity 476
 
  • A.A. Shcherbakov, V.P. Androsov, E.V. Bulyak, A. Dovbnya, I.V. Drebot, P. Gladkikh, V.A. Grevtsev, Yu.N. Grigor'ev, A. Gvozd, V.A. Ivashchenko, I.M. Karnaukhov, V.P. Kozin, V. Lapshin, V.P. Lyashchenko, V. Markov, N.I. Mocheshnikov, V.B. Molodkin, A. Mytsykov, I.M. Necklyudov, F.A. Peev, A.V. Rezaev, A. Shpak, V.L. Skirda, V. Skomorokhov, Y.N. Telegin, V.I. Trotsenko, A.Y. Zelinsky, O.D. Zvonarjova, N. kovalyova
    NSC/KIPT, Kharkov
  • A. Agafonov, A.N. Lebedev
    LPI, Moscow
  • J.I.M. Botman
    TUE, Eindhoven
  • R. Tatchyn
    SLAC, Menlo Park, California
  
 

The sources of the X-rays based on Compton scattering of intense Nd:YAG laser beam on electron beam circulating in a storage ring with beam energy 43 - 225 MeV is under construction in NSC KIPT. In the paper the progress in development and construction of Kharkov X-ray generator NESTOR is presented. The current status of the main facility system design and development are described. New scheme and main parameters of injection system are presented. The facility is going to be in operation in the middle of 2007 and generated X-rays flux is expected to be of about 10(13) phot/s.