emittance-compensation
Paper | Title | Other Keywords | Page |
---|---|---|---|
THPP058 | Planar-Focusing Cathodes | cathode, focusing, emittance, gun | 612 |
| |||
Funding: Work supported by U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38. Conventional pi-mode rf photoinjectors typically use magnetic solenoids for emittance compensation. This provides independent focusing strength, but can complicate rf power feed placement, introduce asymmetries (due to coil crossovers), and greatly increase the cost of the photoinjector. Cathode-region focusing can also provide for a form of emittance compensation. Typically this method strongly couples focusing strength to the field gradient on the cathode, however, and also requires altering the longitudinal position of the cathode to change the focusing. We propose a new method for achieving cathode-region variable-strength focusing for emittance compensation. The new method reduces the coupling to the gradient on the cathode, and does not require a change in the longitudinal position of the cathode. Expected performance for an S-band system is similar to conventional solenoid-based designs. This paper presents the results of rf cavity and beam dynamics simulations of the new design. |
|||
THPP071 | A Method of Emittance Preservation in ERL Merging System | emittance, electron, linac, gun | 644 |
| |||
Funding: Work performed under the auspices of the U.S. Department of Energy Energy recovery linacs (ERLs) are potential candidates for the high power and high brightness electron beams sources. The main advantages of ERL are that electron beam is generated at relatively low energy, injected and accelerated to the operational energy in a linac, and after the use is decelerated in the same linac down to injection energy, and, finally, dumped. A merging system, i.e. a system merging together high energy and low energy beams, is an intrinsic part of any ERL loop. One of the challenges for generating high charge, high brightness electron beams in an ERL is development of a merging system, which provides achromatic condition for space charge dominated beam and which is compatible with the emittance compensation scheme. In this paper we present the theory, the principles of operation and some designs (including simulations) of such merging systems. We use a specific implementation for R&D ERL at Brookhaven as the illustration. |
|||