Paper | Title | Page |
---|---|---|
TUA3 |
The electrostatic deceleration of ions injected into an ECRIS CB plasma | |
|
||
The capture of the 1+ beam is a key parameter in the charge breeding process with an ECRIS-Charge Breeder as it greatly influences the 1+N+ conversion efficiency. The shape of the efficiency vs incident ion energy « Delta V » curve originally led to the theory of slowing down of the injected ions essentially by cumulative small-angle scatterings in collisions with the buffer gas ions. Recent experiments carried out with the PHOENIX charge breeder at LPSC tends to show that the electrostatic deceleration plays a greater role than historically considered. For this study, we varied the CB plasma potential by acting on the microwave power parameter and by measuring the optimum injection energy for sodium, rubidium and cesium ions. Both i) the correlation between the plasma potential and optimum injection energy parameters and ii) the independence of the optimum energy value as a function of the incident ion mass support the new model based on a slowing down essentially electrostatic. | ||
![]() |
Slides TUA3 [2.588 MB] | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOP09 | Status report on 60 GHz ECRIS activity | 49 |
|
||
SEISM (Sixty gigahErtz Ion Source using Megawatt magnets) is an electron cyclotron resonance ion source source operating at the frequency of 60 GHz using a gyrotron producing high intensity HF pulse (up to 1 ms/300 kW/2 Hz). The prototype is based on an axial cusp magnetic geometry using polyhelix coils (installed at the LNCMI facility in Grenoble) generating a closed ECR surface at 2.1 T. Since 2019 and the restart of the project, several experimental campaigns were carried out using oxygen support gas. Beam production was studied using the setting of the source aiming to reproduce the ion current densities of 1 A/cm² previously measured. Set up and recent experimental results, will be presented. Furthermore, in the frame of the PACIFICS project (funded by French National Research Agency under the Equipex Program), a new 60 GHz ion source will be built, where polyhelix will be replaced by superconducting coils and the source will be installed at LPSC for easier availability. A new extraction system will be built in order to transform the observed high current density into a target ion beam intensity of ~100 mA. This paper will present a preliminary study of the new extraction system, built upon the principles developed by Vybin [1]. The system’s design and optimization is carried out using COMSOL Multiphysics and IBSIMU simulation tools, ensuring precise modeling of electric field fields and ion trajectories.
[1] S.S. Vybin et al., “Plasma Sources Sci. Technol.”, vol. 29, p. 11LT02, 2020 |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-ECRIS2024-MOP09 | |
About • | Received ※ 15 September 2024 — Revised ※ 22 November 2024 — Accepted ※ 02 June 2025 — Issued ※ 22 June 2025 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |