Author: Leduc, A.
Paper Title Page
TUXZO03 Angular Distribution Measurement of Atoms Evaporated from a Resistive Oven Applied to Ion Beam Production 72
 
  • T. Thuillier, A. Leduc
    LPSC, Grenoble Cedex, France
  • O. Bajeat, A. Leduc, L. Maunoury
    GANIL, Caen, France
 
  A low temperature oven has been developed to produce calcium beam with Electron Cyclotron Resonance Ion Source. The atom flux from the oven has been studied experimentally as a function of the temperature and the angle of emission by means of a quartz microbalance. The absolute flux measurement permitted to derive Antoine’s coefficient for the calcium sample used : A=8.98± 0.07 and B=7787± 110 in standard unit. The angular FWHM of the atom flux distribution is found to be 53.7±7.3 °at 848K. The atom flux hysteresis observed experimentally in several laboratories is explained as follows: at first calcium heating, the evaporation comes from the sample only resulting in a small evaporation rate. once a full calcium layer has formed on the crucible refractory wall, the caclcium evaporation surface includes the crucible’s enhancing dramatically the evaporation rate for a givent temperature. A Monte-Carlo code, developed to reproduce and investigate the oven behaviour as a function of temperature is presented. A discussion on the gas regime in the oven is proposed as a function of its temperature. A fair agreement between experiment and simulation is found.  
slides icon Slides TUXZO03 [4.542 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-TUXZO03  
About • Received ※ 28 September 2020 — Revised ※ 19 February 2021 — Accepted ※ 21 July 2021 — Issue date ※ 16 April 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)