Author: Huang, W.
Paper Title Page
TUWZO02
Tentative Solution to Plasma Chamber Cooling for High Power ECR Ion Source Operation  
 
  • J.W. Guo, Y.C. Feng, D. Hitz, W. Huang, J.B. Li, L.B. Li, L.X. Li, W. Lu, J.D. Ma, L.T. Sun, Y.Y. Yang, W.H. Zhang, X.Z. Zhang, H.W. Zhao
    IMP/CAS, Lanzhou, People’s Republic of China
  • W. Huang, L.T. Sun
    UCAS, Beijing, People’s Republic of China
 
  High charge state electron cyclotron resonance ion source (ECRIS) is characterized by a so-called min-B magnetic field configuration, which provokes the localized plasma over-heating to plasma chamber especially for the 3rd generation ECRISs at high power operation condition. With the increase of rf power, more plasma energy will be dumped to tiny areas and result in a very high localized power density, which is estimated to be up to 1 kW/cm2. Few existing ECR plasma chamber cooling designs can withstand such high heat fluxes. In this paper, we report a new plasma chamber cooling design with so-called Micro-channel cooling technology, which can not only realize efficient heat transfer, but also retains a small radial thickness that is beneficial for the radial magnetic field. In order to evaluate the performance of the cooling structure with micro-channel design, experimental cooling loop for high heat flux has been designed and built at IMP. Initial experiments demonstrate that optimized configuration can achieve high heat flux cooling in the range of 1 kW/cm2 and beyond. Based on these results, a plasma chamber with micro-channel design for SECRAL has been designed and tested.  
slides icon Slides TUWZO02 [9.402 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUWZO03 Production of Metallic Ion Beams with Inductive Heating Oven at Institute of Modern Physics 65
 
  • W. Lu, Y.C. Feng, J.W. Guo, W. Huang, L.B. Li, L.X. Li, H.Y. Ma, J.D. Ma, C. Qian, L.T. Sun, W.H. Zhang, X.Z. Zhang, H.W. Zhao
    IMP/CAS, Lanzhou, People’s Republic of China
  • W. Huang, L.T. Sun
    UCAS, Beijing, People’s Republic of China
  • C. Qian
    University of Chinese Academy of Sciences, Beijing, People’s Republic of China
 
  A High-Temperature Oven (HTO) with inductive heating technology has been developed successfully in 2019 at Institute of Modern Physics. This oven features durable operation temperature of >2000’ inside the tantalum susceptor. By careful design the oven structure, material compatibility and thermal stress issues at high temperature has been successfully handled, which enables the production of >400 e’A U33+ with SECRAL-II*. With necessary refinement, this type of oven could also be available with room temperature ECR ion sources, like LECR4 and LECR5. Some improvements in structure have been proposed in this year. The design and testing results will be presented in this contribution.
*W. Lu, L. T. Sun, C. Qian, L. B. Li, J. W. Guo, W. Huang, X. Z. Zhang, and H. W. Zhao, Rev. Sci. Instrum. 90, 113318 (2019);
 
slides icon Slides TUWZO03 [7.369 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-TUWZO03  
About • Received ※ 28 September 2020 — Revised ※ 30 December 2020 — Accepted ※ 18 May 2021 — Issue date ※ 08 October 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXZO03 Conceptual Design of an Electrostatic Trap for High Intensity Pulsed Beam 132
 
  • W. Huang, Y.G. Liu, L.T. Sun, H.W. Zhao
    IMP/CAS, Lanzhou, People’s Republic of China
  • L.T. Sun
    UCAS, Beijing, People’s Republic of China
  • D.Z. Xie
    LBNL, Berkeley, California, USA
 
  Funding: China Scholarship Council (CSC) (No. 201904910324)
Highly charged ion sources play an important role in the advancement of heavy ion accelerators worldwide. The beam requirements of highly charged heavy ions from new accelerators have driven the performance of ion sources to their limits and beyond. In parallel to developing new technologies to enhance the performance of ECR ion source, this paper presents a conceptual design of an ion trap aiming to convert a cw ion beam into a short beam pulse with high compression ratios. With an electron gun, a solenoid and a set of drift tubes, the injected ions will be trapped radially and axially. By manipulating the potential of drift tubes, ions can be accumulated with multiple injections and extracted at a fast or slow scheme. This paper presents the simulation and design results of this ion trap prototype.
 
slides icon Slides WEXZO03 [0.910 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2020-WEXZO03  
About • Received ※ 21 September 2020 — Revised ※ 01 January 2021 — Accepted ※ 14 April 2021 — Issue date ※ 14 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)