

Conceptual design of an electrostatic trap for high intensity pulsed beam

W. Huang, L. T. Sun, Y. G. Liu, H. W. Zhao University of Chinese Academy of Sciences, Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS) D. Z. Xie Lawrence Berkeley National Lab (LBNL), USA

outline

- Background
- Principle of the ion trap
- Design of the electron gun
- Simulation of the ion trap
- Summary

background

Heavy ion beam requirements for the next generation accelerators

	HIAF/IMP	MEIC/JLab	FAIR/GSI	NICA/Dubna
Beam	U ³⁴⁺	P_{b}^{30+}	$U^{4+ ightarrow 28+}$	U^{32+}
l (emA)	1.7	0.5	15	1.5
lons/Pulse	1xE11	2.5xE10	3.3E11	2E9
Pulse Width <mark>(µs)</mark>	400	250	100	7
Frequency (Hz)	1	5	1	50
Ion Source	ECR	ECR/EBIS	MeVVa (X) Now ECR	ESIS
Mode	AG	AG/Pulse	Pulse	Pulse

*AG: After Glow

Arguments on ion beam compressor, LBNL, USA, 2016

background

Present ECR performance on uranium beams in IMP

W. Lu et al., Rev. Sci. Instrum. 90, 113318 (2019).

The requirement of HIAF for U34+ is 4 times of this performance.

Solutions $\begin{cases} 4^{th} \text{ generation ECR ion sources.} \\ \text{Ion trap.} \end{cases}$

EBIS?

 \leq 20% in the desired charge state distribution.

ECR?

 $\begin{array}{c} \begin{array}{c} f=1 \text{ Hz, 10 ms} \\ \text{OW mode} \end{array} & \text{Accelerator} \\ \begin{array}{c} \text{OW mode} \end{array} & \text{OW mode} \end{array} \end{array} \\ \begin{array}{c} \text{Solution} \\ \text{Solution} \end{array} & \begin{array}{c} \text{Accelerator} \\ \text{Solution} \end{array} & \begin{array}{c} \text{Solution} \end{array} & \begin{array}{c} \text{Solution} \\ \text{Solution} \end{array} & \begin{array}{c} \text{Solution}$

- Most of the ions are used.
- More ions are in the desired charge state.

An electrically confined ion beam compressor

Arguments on ion beam compressor, LBNL, USA, 2016

*ITRIP: Ion Trap for high Intensity Pulsed beams

features:

- 1. Extraction frequency ~ 1 Hz. (requirement of the HIAF)
- 2. No ionization of the desired charge state of ion.
- 3. Hollow structure of electron gun to extract the ions.

Design parameters	value			
Length	0.5 m			
Magnetic field	~ 0.5 T			
Ee	< 1.2 keV (ionization threshold of U ³⁴⁺)			
le	<1 A			
lon trapped (charges)	~ 3E10			

e.g. U³⁴⁺

U³⁴⁺ ions

2020/9/30

ECRIS 2020, East Lansing

~ 1.5E10

Design of the electron gun

7th ~ 8th drift tubes Anode Electron beam density map

Energy of electron ~ 1 keV, current ~ 440 mA.

2020/9/30

Design of the electron gun

Density distribution of electrons

 $r_1 \sim 3 \text{ mm}, r_2 \sim 4.5 \text{ mm}.$

The depth of electron potential is ~ 0.3 kV.

Simulation of the ion trap

Injection of ions

lons parameters: radius ~5 mm, 0.1 emA

Energy of ions in the trap: $(20 \sim 50) * q eV$

*q: charge state

Tracking without collisions.

lons can be trapped and accumulated in the trap.

2020/9/30

Simulation of the ion trap

Accumulation of electrons

Accumulation of ions

Evolution of charge state of ions

Parameters: accumulation of U³⁴⁺ ions as fitting curve, vacuum 1E-10 Torr, electron current is 440 mA with an energy of 1 keV.

Considering only charge exchange and radiative recombination processes.

summary

- An ion trap based on ECRIS is proposed for high intensity highly charged ions.
- The ion trap is a promising and economic device.
- The above discussed design can be further refined for better efficiency but should be verified with experiments.

Thank you for your attention!