Author: Neri, L.
Paper Title Page
MODO01 Structural Information on the ECR Plasma by X-ray Imaging 30
 
  • R. Rácz, S. Biri
    ATOMKI, Debrecen, Hungary
  • C. Caliri, G. Castro, S. Gammino, D. Mascali, L. Neri, F.P. Romano
    INFN/LNS, Catania, Italy
  • J. Pálinkás
    DU, Debrecen, Hungary
  • F.P. Romano
    IBAM-CNR, Catania, Italy
 
  Precise knowledge on the density distribution of the Electron Cyclotron Resonance Ion Source plasma is needed by several reasons: i) in order to possibly improve the quality parameters of the extracted ion beam (emittance, brightness) strongly linked to the plasma structure, ii) to correctly investigate the recently observed plasma instabilities and/or the implementation of alternative heating methods (e.g. modal conversion) iii) in order to improve the general microwave-to-plasma coupling efficiency, in view of a microwave-absorption oriented design of future ECRIS. The non-destructive spectroscopic diagnostic methods give information always corresponding to an integration over the whole plasma volume. X-ray imaging by pin-hole camera can partly overcome this limitation. We performed volumetric and space resolved X-ray measurements at the ATOMKI ECRIS operated at lower frequencies than usual. The experimental setup in detail and the methods how the working parameters were selected will be shown. The integrated and photon-counting analyses of the collected plasma images show a strong effect of the frequency and magnetic field on the plasma structure and local energy content.  
slides icon Slides MODO01 [10.710 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2016-MODO01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOFO03
Simulations of the ECR-based Charge Breeding Process at INFN: Status and Perspectives  
 
  • A. Galatà
    INFN/LNL, Legnaro (PD), Italy
  • D. Mascali, L. Neri, G. Torrisi
    INFN/LNS, Catania, Italy
 
  Since 2012, the INFN ion source group has been undertaking an intense activity on numerical modelling, in the European context of the EMILIE Project until 2014. The work concerns the study of the two main aspects influencing the performances of an ECR-based charge breeder: on one hand, the interaction of the injected 1+ beam with the ECR plasma; on the other hand, the energy coupling to plasma electrons by the microwave field set-up inside the plasma chamber. The first aspect has been addressed by developing a numerical code in a Matlab environment, able to reproduce the capture and thermalization of an ion beam by the ECR plasma. Equations describing the process have been implemented trough the Langevin formalism, including a plasma model of increasing complexity. The second aspect has been studied with the interplay between the 3D solver COMSOL Multiphysics and Matlab, describing the plasma through its fully 3D dielectric permittivity tensor. This paper describes the state-of-the-art of the work on both the fronts: it will show an overview of the beam-plasma interaction, offering some hints for the optimization of already existing devices or for the design of new ones.  
slides icon Slides MOFO03 [14.312 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUAO01 The Proton Source for the European Spallation Source (PS-ESS): Installation and Commissioning at INFN-LNS 39
 
  • L. Celona, L. Allegra, A. Amato, G. Calabrese, A.C. Caruso, G. Castro, F. Chines, G. Gallo, S. Gammino, O. Leonardi, A. Longhitano, G. Manno, S. Marletta, D. Mascali, A. Massara, A. Maugeri, M. Mazzaglia, L. Neri, S. Passarello, G. Pastore, A. Seminara, A. Spartà, G. Torrisi, S. Vinciguerra
    INFN/LNS, Catania, Italy
  • S. Di Martino, P. Nicotra
    Si.A.Tel SRL, Catania, Italy
 
  A 2.45 GHz ' 0.1 T microwave discharge Proton Source has been designed and assembled at INFN-LNS for the European Spallation Source (PS-ESS) in order to produce pulsed beams of protons up to 74 mA nominal current, at 75 keV of energy, with a transverse emittance containing 99 % of the nominal proton current below 2.25 π mm mrad and a beam stability of ± 2 %. The challenging performances of the machine have triggered specific studies on the maximization of the proton fraction inside the plasma and of the overall plasma density, including dedicated modelling of the wave-to-plasma interaction and ionization processes. The plasma conditioning phase started in July and excellent RF to plasma coupling, more than 99.5% is evident since the beginning. Reflected power fluctuation less than 0.05 % was measured providing a great starting point to reach the beam stability requested by the ESS accelerator.  
slides icon Slides TUAO01 [14.571 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2016-TUAO01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPP18 Innovative Mechanical Solutions for the Design of the High Intensity Proton Injector for the European Spallation Source 112
 
  • G. Gallo, L. Allegra, L. Celona, S. Gammino, D. Mascali, L. Neri, G. Torrisi
    INFN/LNS, Catania, Italy
 
  The design of the 2.45 GHz, 0.1 T microwave discharge Proton Source for the European Spallation Source (PS-ESS) has required on-purpose solutions in order to maximize the beam brightness, keeping a very high reliability figure. The mitigation of maintenance issues has been the main guideline through the design phase to maximize the MTBF and minimize the MTTR. The mechanical design has been based on advanced solutions in order to reduce as much as possible the venting time for the plasma chamber, to facilitate the replacement of extraction electrodes and/or plasma chamber, and to simplify any after-maintenance alignment procedure. The paper will describe the strategy which has driven the design phase, the solutions adopted to fulfil the project goals and the results of the assembly phase recently concluded at INFN-LNS with successful first plasma.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ECRIS2016-WEPP18  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)