TUOCG  —  Applications of Accelerators   (24-Jun-08   15:00—16:00)

Chair: H. Eickhoff, GSI, Darmstadt

Paper Title Page
TUOCG01 The Heidelberg Ion Therapy (HIT) Accelerator Coming into Operation 979
 
  • D. Ondreka, U. Weinrich
    GSI, Darmstadt
 
  The Heidelberg Ion Therapy Facility (HIT) is the first dedicated proton and carbon therapy facility in Europe. It uses full three dimensional intensity-controlled raster scanning as basic treatment technique. The commissioning of the accelerator with beam was successfully finished for two fixed-beam treatment places in December 2007. Therefore a library of 40000 combinations of beam properties (ion type, treatment place, energy, intensity, beam size) is now offered to the treatment technique teams preparing the treatment systems for the clinical use. The HIT facility also comprises a gantry with full scanning properties constituting the only carbon ion gantry worldwide. The gantry can be rotated by 360 degree, so that the beam may be aimed at the patient from arbitrary directions. Commissioning with beam of the gantry was started in January 2008 when the first beams were transported successfully into the treatment room. The talk will report on experiences and results of the commissioning of the accelerator sections. It puts special emphasis on the subject of preparing the enormous variety of beam properties in an efficient and reliable way.  
slides icon Slides  
TUOCG02 Status Report on the Centro Nazionale di Adroterapia Oncologica (CNAO) 982
 
  • M. Pullia
    CNAO Foundation, Milan
 
  The Centro Nazionale di Adroterapia Oncologica (National Center for Oncological Hadrontherapy, CNAO) is the Italian center for deep hadrontherapy. It will deliver treatments with active scanning both with proton and carbon ion beams. The accelerator complex is based on a 25 m diameter synchrotron capable of accelerating carbon ions up to 400 MeV/u and protons up to 250 MeV. Four treatment lines, in three treatment rooms, are foreseen in the first stage. In one of the three rooms a vertical and a horizontal fixed beam lines are provided, while in the other two rooms the treatment will be administered with horizontal beams only. The injection chain is positioned inside the synchrotron ring itself, to save space and to better exploit the two non-dispersive regions in the synchrotron. The injection chain is made by a 8 keV/u Low Energy Beam Transfer line (LEBT), a RFQ accelerating the beam to 400 keV/u, a LINAC to reach the injection energy of 7 MeV/u and a Medium Energy Beam Transfer line (MEBT) to transport the beam to the synchrotron. This report describes the design and the performances of the CNAO complex, and reports about the status of the commissioning of the machine.  
slides icon Slides  
TUOCG03 Proposal for a ½ MW Electron Linac for Rare Isotope and Materials Science 985
 
  • S. R. Koscielniak, P. G. Bricault, B. Davids, J. Dilling, M. Dombsky
    TRIUMF, Vancouver
  • D. Karlen
    Victoria University, Victoria, B. C.
 
  TRIUMF, in collaboration with university partners, proposes to construct a megawatt-class electron linear accelerator (e-linac) as a driver for U(gamma,f) of actinide targets with rates up to 1013 - 1014 fissions/sec and for (gamma,p)8Li for materials science. The particular emphasis would be on neutron-rich species. The 50 MeV, 10 mA, c.w. linac is based on super-conducting radio-frequency (SRF) technology at 1.3 GHz. Though high power/current electron linacs are a mature technology proposed elsewhere for applications ranging from 4th generation light-sources to TeV-scale linear colliders, TRIUMF is in the vanguard for applying this technology to the copious production of isotopes for studies of (i) nuclear structure and astrophysics; and (ii) beta-NMR for materials science.  
slides icon Slides