08 Applications of Accelerators, Technology Transfer and Relations with Industry

U02 Materials Analysis and Modification

Paper Title Page
TUZG01 IFMIF: Status and Developments 974
 
  • P. Garin
    CEA, Gif-sur-Yvette
 
  On the way to the fusion demonstrator (DEMO), ITER is designed to tackle the physics properties of thermonuclear plasmas in relevant conditions, as well as the key technologies. But because of its experimental character, the amount of neutrons produced by ITER all along its life will be about two orders of magnitude below what is expected in a fusion Power Plant. A dedicated facility, called IFMIF (International Fusion Materials Irradiation Facility), is thus mandatory to study and analyse the behaviour of materials under a high flux of energetic neutrons (14 MeV). The Engineering Validation and Engineering Design Activities (EVEDA), launched in the framework of a bilateral agreement between Euratom and the Government of Japan in 2007, with a duration of 6 years, aims at producing the detailed design file enabling the construction of IFMIF. The key systems will be also tested during this phase. One of the most important one is the accelerator, bringing a deuteron beam of 125 mA to an output energy of 40 MeV. The whole facility will be described, including the detail of the accelerator, as well as the organisational framework of the project.  
slides icon Slides  
TUPP139 Variable Energy 2-MeV S-Band Linac for X-ray and Other Applications 1845
 
  • H. Bender, D. D. Schwellenbach, R. Sturgess, C. P. Trainham
    NSTec, Los Alamos, New Mexico
  • J. M. Potter
    JP Accelerator Works, Los Alamos, New Mexico
 
  We will describe the design and operation of a compact, 2-MeV, S-band linear accelerator (linac) with variable energy tuning and short-pulse operation down to 15 ps with 100-A peak current. The design consists of a buncher cavity for short-pulse operation and two coupled resonator sections for acceleration. Single-pulse operation is accomplished through a fast injector system with a 219-MHz subharmonic buncher. The machine is intended to support a variety of applications, such as X-ray and electron beam diagnostic development and, recently, electron diffraction studies of phase transitions in shocked materials.  
TUPP141 Electron Accelerators for Cleaning Flue Gases and for Oil Liquefaction 1848
 
  • S. Korenev, R. P. Johnson
    Muons, Inc, Batavia
 
  High-power electron beams can be used to reduce the environmental impact of coal and oil-fired power generating plants by removing harmful materials from flue gases. This technology has been tested in the laboratory and at smaller industrial levels, but to make it economically attractive, the accelerator costs must be reduced and the efficiency must be increased for removing toxic components in low concentrations. We propose a simple electron accelerator with a wide beam to reduce costs. To remove toxic materials we propose a plasma reactor for desulfurization and selective catalytic reduction. The designs of 0.5 to 1.0 MeV accelerators with 20 to 100 kW average power are considered, along with the design of a plasma reactor for flue gas treatment. The design of a pilot facility for the oil industry is also presented.  
TUPP143 Collective Ionization by Attosecond Electron Bunches 1851
 
  • A. Ogata, T. Kondoh, K. Norizawa, J. Yang, Y. Yoshida
    ISIR, Osaka
 
  Present accelerator technology has realized linac bunch length on the order of femtosecond. If the bunch length becomes onto the order of attosecond, its inverse is comparable to the ionization frequency; ionization potential divided by Plank's constant. The stopping power then becomes proportional to square of the number of bunch electrons. Such a bunch ionizes the target collectively. This collective, or coherent ionization will provide us plenty of applications including unknown ones at the present. This phenomenon has historically been expected in cluster beams, which can be regarded as ultra-short bunches. The present paper adapts formalism of stopping power of a medium characterized by a dielectric function against cluster beams to that against electron bunches. It then describes some numerical calculations on the collective ionization by the attosecond electron bunches.