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Abstract

The formalism of the stopping power for cluster beams
was adapted to the stopping power for short electron
bunches by using the wake field of a medium character-
ized by a plasma frequency. It was shown that an electron
bunch with the length of the order of attoseconds collec-
tively loses its energy to excite a high-energy density state
in the target.

The dynamics of intricate molecular and atomic pro-
cesses can be elucidated by using electron bunches of the
order of 100 fs in the pump-probe method[1]. However,
direct usage of the energy of electron beams has been lim-
ited, because electron beams interact with matter in a more
moderate manner than ion beams.

If the electron bunch length σ is of the order of attosec-
onds, its inverse is comparable to the ionization frequency,
i.e., c/σ ∼ ωI = I/h̄, where c and I are the light ve-
locity and the ionization potential of a target, respectively.
This type of electron bunch allows collective ionization of
the target, which will enable us to develop many different
applications in the future.

The energy loss of a single electron in a bunch can be
expressed as

dW

dz̃
(ρ, z̃) =

dW1

dz̃
+

dW2

dz̃
, (1)

where ρ = (x2 + y2)1/2 and z̃ = z − vt, which is defined
relative to the position (x, y, z) = (0, 0, vt) of the moving
electron with a velocity v. The first term dW1/dz̃ is the
energy loss due to the direct interaction between the elec-
tron itself and the environment, that is termed as stopping
power. If the electron density of the bunch is high, we also
need to consider the second term dW2/dz̃, which denotes
the energy loss due to the fields caused by other electrons
in the bunch. In this study we focus on this second term.
Conventionally this type of energy loss has been studied in
cluster beams, in which each cluster can be regarded as a
ultra short bunch[2].

We adapt the formalism of the stopping power for cluster
beams to that for short electron bunches by using the wake
field of a medium characterized by a dielectric function
ε(k, ω)[3]. If the frequency characterizing the bunch length
is much greater than the highest resonant frequency, the di-
electric function becomes a simple function of the plasma
frequency[4]. Although our approach is more macroscopic
than Bethe’s[5], we can refine it to derive the same result
as that obtained by Bethe[6].
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The following description is applicable to the energy re-
gion of electron beams in which neither density effect[7]
nor radiation loss[5] is primary. A beam is assumed to be
frozen, i.e., the spatial distribution of electrons in the beam
is fixed throughout the interaction.

In this study, we have used the Coulomb gauge. If we
do not take account of the transverse motion of an electron,
we obtain a pure transverse vector potential in this gauge.
However, because the transverse current is not negligible
in relativistic beams[8], we consider the following equation
to describe the longitudinal electric field accompanying an
electron of the bunch in a medium,

E‖(r, t) = −∇Φ(r, t)− 1
c

∂A‖
∂t

. (2)

We obtain the potentials in the linear approximation by
performing a Fourier transform with wave number k and
frequency ω[9]:

Φ =
2e

πv2

∫ ∞

0

dk

k

∫ kv

0

ωdωJ0[ρ(k2 − ω2/v2)1/2]

×
[
Re

(
1
ε‖

)
cos kz̃ − Im

(
1
ε‖

)
sin kz̃

]
, (3)

A‖ =
2e

πc2

∫ ∞

0

dk

k

∫ kv

0

ωdωJ0[ρ(k2 − ω2/v2)1/2]

×
[
Re

(
k2 − ω2/v2

k2 − ε⊥ω2/c2

)
cos kz̃

− Im
(

k2 − ω2/v2

k2 − ε⊥ω2/c2

)
sin kz̃

]
. (4)

Because the momentum transfer from the projectile elec-
tron to a media electron is relativistic, we can assume
ε‖ = ε⊥[10]. The procedure to derive the longitudinal field
for ion beams has been presented in [8, 9, 11]; hence we
have omitted the derivation of the following result for ion
beams:

E‖(ρ, z̃) = −2πe4NZ

mv2
cos

(
ωpz̃

v

)

×
[
log

2mv2γ2

I
− β2

]
K0

[
ωpρ

v
,

v

vF

]
, (5)

where N , Z and vF respectively denote the atomic density,
the atomic number and the Fermi energy of the medium,
β = v/c ∼ 1, γ = 1/(1− β2)1/2, m is the electron mass,
e is the electron charge, and ωp = (4πe2n/m)1/2 is the
plasma frequency when the medium is regarded as an elec-
tron gas of density n.
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Because our projectiles are electrons, the terms in the
first square bracket must be changed. We write

E‖(ρ, z̃) = −2πe4NZ

mv2
cos

(
ωpz̃

v

)

×
[
log

(mc2)2γ2

2I2
+

1
8

]
K0

[
ωpρ

v
,

v

vF

]
. (6)

The difference is due to the facts that in the case of elec-
tron projection, the maximum energy loss in any collision
is mv2/4 and not mv2/2, and that we have to take into
account the Mott scattering cross section for identical par-
ticles with a 1/2 spin.

The function contained in eq. (6),

K0(ξ, η) =
∫ η

0

yJ0[ξy]
1 + y2

dy, (7)

gives the transverse dependence of the field[11], which ap-
proaches the modified Bessel function K0[ξ] for a large
value of ξ. We first consider the case in which all the elec-
trons are lined along the beam axis directed by ρ = 0.
When ξ = 0, i.e., ρ = 0, we have K0(0, η) = [log(1 +
η2)]/2.

We now assume specific values for some of the parame-
ters. First, assume ωp = 1016s−1. This is the typical value
of ωp for metals, which corresponds to a plasmon energy of
∼7eV and a plasma skin depth c/ωp of∼ 30nm. The Fermi
velocity of copper is∼ 1.57×106ms−1. If we consider this
as the typical value for metals, we have v/vF ∼ c/vF ∼ 20
in eqs. (6-7).

The energy loss denoted by the second term of eq. (1) is
proportional to the longitudinal electric field or the longi-
tudinal wake field:

dW2

dz̃
= eE‖(ρ, z̃), (8)

On the other hand, the stopping power, or the first term of
eq. (1) is proportional to the field existing at the origin:

dW1

dz̃
= eE‖(0, 0) =

2πe4NZ

mv2

[
log

(mc2)2γ2

2I2
+

1
8

]
.

(9)
The longitudinal wake field along the beam axis ρ = 0

is shown in Fig. 1. An electron in the bunch trailing the in-
jected electron loses its energy, if the wake field is negative,

Figure 1: The z̃ dependence of the wake field of a single
electron.

and vice versa. Figure 1 shows that if the distance between
the driving electron and a trailing one is less than ∼ 2c/ωp

(it is ∼60nm in the present case) the trailing electron loses
its energy. As the distance between the electrons increases,
there is an alternate loss and gain of energy[12].

In order to derive the total energy loss/gain in the bunch
as a whole, we have to sum up the total change in energy
for all the electrons. As shown in Fig. 1, the energy change
of a trailing electron depends on the distance between the
electrons in a pair. Thus, the distribution of the mutual
distances between the electrons in the bunch is required to
calculate the total energy change. Let us assume that the
electrons in the bunch are Gaussian distributed longitudi-
nally with a deviation σ. Statistics tells us that the mutual
distances x of the pair of electrons in the bunch also make
Gaussian distribution, in which the deviation is 2σ[13]:

f(x) =
1

2σπ1/2
exp

[
− x2

4σ2

]
. (10)

If a bunch consists of N electrons, the total number of
pairs is given by

(
N
2

)
=

N !
2!(N − 2)!

=
N(N − 1)

2
. (11)

This value approaches N2/2 when N � 1.

Figure 2: Enhancement of the stopping power by the col-
lective effect as a function of the bunch length σ. Enhance-
ment is given by the value in the figure times N , the number
of electrons in the bunch.

The collective energy reduction of a bunch due to the
wake field then becomes

[
dW2

dz̃

]

C

=
N(N − 1)

2

∫ ∞

−∞
f(z̃)

dW2

dz̃
dz̃. (12)

If we neglect the wake, the energy reduction of a bunch
consisting of N electrons is simply given by

[
dW2

dz̃

]

I

= N
dW1

dz̃
. (13)

The enhancement ε due to the collective effect defined by

ε =
[
dW2

dz̃

]

C

/

[
dW2

dz̃

]

I

, (14)
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is shown in Fig. 2 as a function of the bunch length us-
ing both linear and logarithmic scales. Because f(x) ap-
proaches the delta function as σ approaches 0, the limit on
enhancement is given by (N − 1)/2 ∼ N/2.

From Fig. 2 it can be observed that if σ = 3c/ωp or
∼100nm at ωp = 1016s−1, the enhancement is ∼ 10−4N .
For a bunch with a charge is 1pC, the enhancement is
625. The range of a single electron of 10MeV in copper
is 6.9mm, which can be reduced to ∼ 10μm. If the beam
were frozen, a total beam energy of 10−7J would be ab-
sorbed in a cylinder having a volume of 3×10−18m−3. The
energy density would then become 3 × 1012Jm−3, which
corresponds to a high-energy density state[14]. However,
further dynamic study is necessary to clarify the validity of
the assumption of the frozen beam.

Figure 3: Plots of eq.(7) (dotted lines) for two values of
η = v/vF ∼ c/vF and the corresponding Bessel function
(solid line).

We now consider the case in which the bunch has a finite
transverse size. In eq. (6), the value of K0 determines the
ρ dependence of the wake, which is shown in Fig. 3 for
two values of η = v/vF ∼ c/vF . This implies that the
approximation by the Bessel function is valid except the
neighborhood of the projectile in the present case. It also
implies that the transverse bunch size should be less than
∼ 2c/ωp to allow collective ionization of a target ; that
is, if ωp = 1016s−1, the bunch width should be less than
∼60nm.

This is a very severe restriction. However, the bunch
width can be reduced by the lens effect of a plasma[15].
In vacuum, the space-charge force balances the pinch force
of the bunch current. In a plasma, the plasma electrons
escape and the remaining ions neutralize the space charge
of the bunch electrons. The remaining pinch force causes a
reduction in the bunch width.

Calculation of the plasma lens effect is beyond the scope
of this study. However, we here provide an approximate es-
timation. The transverse beam size σW obeys the envelope
equation and is given by

d2σW

dz2
+ KσW =

ε2

σ3
W

, (15)

where ε is the emittance. For the matched beam condition,

the beam size is given by σ2
W = ε/K1/2. We can approxi-

mate the plasma focusing strength as K = 2ω2
p/(γc2)[15].

By assuming γ = 50, ωp = 1016s−1, ε = 10−6m, we can
obtain a matched beam size of σW ∼ 1nm. This estimate
shows that the plasma has a strong lens effect.

Yudin[16] has shown that the enhancement has cutoffs at

ε1 = nb

(
v

ωI

)3

, and ε2 =
h̄v

e2

mv2

h̄ωI
, (16)

where nb is the electron density in the beam. These values
are ε1 ∼ 1.5 × 104 and ε2 ∼ 3 × 104 at v = c, I =10eV
and nb = 2 × 1021cm−3. In our numerical example, the
enhancement was 625, which is well below these limits.

In summary, we have observed that collective energy
loss occurs in an attosecond electron bunch, and the loss
in energy is proportional to the square of the number of
electrons in the bunch. We have presented some results for
the case in which the bunched electrons are frozen along
the beam axis. The transverse size of the bunch must also
be small to allow the collective ionization. The plasma lens
effect would decrease the bunch width to satisfy this con-
dition.
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