A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Zhabitsky, V.

Paper Title Page
WEPP029 Project of the Nuclotron-based Ion Collider Facility (NICA) at JINR 2581
 
  • G. V. Trubnikov, N. N. Agapov, V. Alexandrov, A. V. Butenko, E. E. Donets, A. V. Eliseev, A. Govorov, V. Kekelidze, H. G. Khodzhibagiyan, V. Kobets, A. D. Kovalenko, O. S. Kozlov, A. Kuznetsov, I. N. Meshkov, V. A. Mikhaylov, V. Monchinsky, V. Shevtsov, A. O. Sidorin, A. N. Sissakian, A. V. Smirnov, A. Sorin, V. Toneev, V. Volkov, V. Zhabitsky
    JINR, Dubna, Moscow Region
  • O. I. Brovko, I. Issinsky
    JINR/LHE, Moscow
 
  The Nuclotron-based Ion Collider fAcility (NICA) is the new accelerator complex being constructed at JINR aimed to provide collider experiments with heavy ions up to uranium at maximum energy (center of mass) equal to 9 GeV/u. It includes new 6 Mev/u linac, 440 MeV/u booster, upgraded SC synchrotron Nuclotron and collider consisting of two SC rings, which provide average luminosity of 1027cm-2s-1. General goal of the project is to start in the coming 5-7 years experimental study of hot and dense strongly interacting QCD matter and search for possible manifestation of signs of the mixed phase and critical endpoint in heavy ion collisions. The NICA and the Multi Purpose Detector (MPD) are proposed for these purposes. Accelerator complex NICA is being built on the experience and technological developments at the Nuclotron facility and incorporates new technological concepts. The new facility will allow also an effective acceleration of light ions to the Nuclotron maximum energy and an increase of intensity of polarized deuteron beams up to the level above 1010 particles/cycle. The scheme of the facility, its operation scenario and beam dynamics are presented in the report.  
THPC121 LHC Transverse Feedback System and its Hardware Commissioning 3266
 
  • W. Höfle, P. Baudrenghien, F. Killing, Y. A. Kojevnikov, G. Kotzian, R. Louwerse, E. Montesinos, V. Rossi, M. Schokker, E. Thepenier, D. Valuch
    CERN, Geneva
  • E. V. Gorbachev, N. I. Lebedev, A. A. Makarov, S. Rubtsun, V. Zhabitsky
    JINR, Dubna, Moscow Region
 
  A powerful transverse feedback system ('damper') has been installed in LHC. It will stabilise coupled bunch instabilities in a frequency range from 3 kHz to 20 MHz and at the same time damp injection oscillations originating from steering errors and injection kicker ripple. The transverse damper can also be used as an exciter for purposes of abort gap cleaning or tune measurement. The power and low-level systems layout are described along with results from the hardware commissioning. The achieved performance is compared with earlier predictions and requirements for injection damping and instability control. Requirements and first measurements of the performance of the low-level system are summarized. The chosen approach for the low-level system using advanced FPGA technology is very flexible allowing implementation of future upgrades of the signal processing without changing the hardware.