A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Vaccaro, A.

Paper Title Page
TUPC150 Ensemble Cavity Control System Simulation Using Pulse-to-pulse Calibration 1422
 
  • C. Serrano, L. R. Doolittle, A. Ratti, A. Vaccaro
    LBNL, Berkeley, California
 
  For cost reasons one klystron will supply RF power to multiple cavities in recent projects. Individual cavity field stability and optimal drive needs to be achieved considering beam propagation, cavity tuning, cavity coupling, and cable lengths. External environmental factors continuously modify physical properties of the accelerating structures and waveguides. Therefore a calibration system has been designed to adapt individual drive signals and vector-sum alignment in a pulse-to-pulse basis. An eight-cavity model and a calibration system have been tested in simulation using the hardware-software simulation tool developed at LBNL.  
TUPC153 Hardware-software Simulation for LLRF Control System Development 1428
 
  • A. Vaccaro, L. R. Doolittle, A. Ratti, C. Serrano
    LBNL, Berkeley, California
 
  Field Programmable Gate Arrays (FPGA) have been used in accelerator controls for a long time. Stricter performance requirements in new accelerator designs force LLRF control systems to continuously improve, and the increasing density of available FPGAs enables such progress. The increased complexity in FPGA design is not always followed by new RF systems availability for development and testing. Therefore, a hardware-software simulation tool has been developed to model RF systems by a software simulator. It simulates the interaction of HDL code that is to be synthesized with both RF systems and communication ports to external controls software, reproducing realistic working conditions of the FPGA. The hardware-software interaction for LLRF control system design is discussed here.