
HARDWARE-SOFTWARE SIMULATION FOR LLRF CONTROL SYSTEM
DEVELOPMENT

A. Vaccaro, L. Doolittle, A. Ratti, C. Serrano, LBNL, Berkeley, CA 94710, USA

Abstract

Field Programmable Gate Arrays (FPGA) have been
used in accelerator controls for a long time. Stricter per-
formance requirements in new accelerator designs force
LLRF control systems to continuously improve, and the in-
creasing density of available FPGAs enables such progress.
The increased complexity in FPGA design is not always
followed by new Radio Frequency (RF) systems availabil-
ity for development and testing. Therefore, a hardware-
software simulation tool has been developed to model RF
systems by a software simulator. It simulates the interac-
tion of Hardware Description Language (HDL) code that
is to be synthesized with both RF systems and commu-
nication ports to external controls software, reproducing
realistic working conditions of the FPGA. The hardware-
software interaction for Low-level RF (LLRF) control sys-
tem design is discussed here.

INTRODUCTION

The structure of digital LLRF systems can be divided
into two main blocks: the signal conditioning logic to
interface with the outside world, and the Digital Signal Pro-
cessing (DSP) performing control of the sampled RF fields.

From a purely digital prospective, the RF fields from
A/D converter(s) are available in a digital word in an
FPGA, and updated every sampling period. Then they are
conditioned digitally (filtered, IQ and down converted),
DSP is performed, and after some delay the FPGA condi-
tions and delivers a control signal to a D/A converter.

Modern FPGAs communicate directly or indirectly with
modern computers using standard hardware such as USB
or Ethernet. The communications are used for monitor-
ing or communication with external control systems. This
bi-directional exchange can also be considered as an all-
digital input-processing-output process. Digital LLRF con-
trol designers can then take advantage of the increasing
complexity of FPGAs, and the high flexibility of the dig-
ital world, by using software models of RF systems.

RF MODEL

The hardware-software simulation tool described here
reproduces normal operation of each element in the sys-
tem, and their interactions in a virtualized-time environ-
ment, where simulation steps match the FPGA clock pe-
riod. For efficiency, the response of analog components
needs then to be characterized in discrete-time domain, and
optimized for computational speed.

Discrete-time transfer function

The entire system is modeled at baseband, thus all sig-
nals are represented in vector form. The RF transfer func-
tion of filters and cavities can be expressed as a combina-
tion of single-pole low-pass filters. The adopted discrete-
time approximation of a single-pole low-pass filter differ-
ential equation, is expressed as follows:

v′
o = avo +

1
2
b(vi + v′

i) (1)

where a =
1 + 1

2Δt · p
1 − 1

2Δt · p, and b =
Δt

1 − 1
2Δt · p

v′
i/o and vi/o are the current and previous inputs/outputs,

respectively. Δt is the simulation step duration, and p is the
pole location (a complex number). Cavity detuning is rep-
resented by a slight pole shifting into the imaginary direc-
tion. Waveform propagation through waveguides, measur-
ing noise, and other effects are characterized using simple
operations of complex signals. Finally, beam current and
external RF sources (including non-linear effects) are also
represented.

Software implementation

All RF components are modeled in C programming lan-
guage. Fig. 1 shows the development process followed
to obtain the response of the RF system after one simula-
tion step. First we determine the characteristic parameters
defining each element (e.g. quality factor, couplings, etc.
in the case of a cavity), and its corresponding discrete-time
transfer function. Then, we instantiate those parameters
with numeric values (e.g. Q=2100, β in=0.98, etc.), and fi-
nally we concatenate the inputs and outputs to obtain the
response of a given RF system after one simulation step.

LLRF CONTROLS

Modern LLRF control systems are implemented in an
FPGA, whose complexity is continuously increasing, and
is capable of communicating with software devices. Com-
plex and sophisticated algorithms are easily implemented
in software. This possibility is becoming widely used, and
the complexity of LLRF systems is being progressively
transferred from hardware to software.

The role of the FPGA is then to perform the traditional
digital signal processing in the feedback loop, and to com-
municate with software control devices (at lower rates due
to the limited speed of data computation and transport).

TUPC153 Proceedings of EPAC08, Genoa, Italy

07 Accelerator Technology Main Systems

1428

T25 Low Level RF



FILTER DELAYCAVITY

OUT OUT ININ OUTIN
CAVITY 1 DELAY 1FILTER 1

DELAY 1CAVITY 1FILTER 1

RF SYSTEM

OUTIN

one simulation step

INTEGRATION

INSTANTIATION

Figure 1: Development process to obtain the response of an
RF system after one simulation step (illustrative example).

Digital Signal Processing

The FPGA receives the sampled RF fields from A/D
converters. If sampled at 90◦, their interleaved I (in-phase)
and Q (quadrature) components are available in the FPGA
every sampling period, contained in a digital word. These
signals are then propagated through the FPGA logic, and
after some time the control signal is available in another
digital word to the D/A converter, updated at a system
clock period.

The LLRF control designer is then searching for the op-
timal performance of the logic between those two FPGA
registers: the one containing the sampled RF fields, and the
other one containing the control signal.

FPGA communication ports

In order to communicate with other devices, the FPGA
needs to follow a number of rules defined by a com-
munication protocol. A part of the logic in the FPGA
fabric is devoted to condition signals prior to transfer, and
then a communication controller will take those signals,
adapt their binary format to a given protocol (coding), and
transfer them through a digital communication channel.
The inverse process (decoding and conditioning) happens
to signals received from a communication link.

Several factors such as the capacity of the link between
the FPGA and the other communicating entity, their
computation speed, etc. determine the transfer data rate. It
is generally much lower than the system clock used in the
feedback control loop. Signals need then to cross from one
clock domain to the other.

Clock domain crossing is performed using data
strobes [1], which are asserted by the emmiting logic block
when the data is ready, and kept available for a suitable
amount of time. Decimation and interpolation can be
performed using computationally optimized low-pass filter
implementations, such as CIC (Cascaded Integrator-Comb)
filters [2].

FPGAPLANT SOFTWARE
ADC Ethernet
DAC USB

Figure 2: Independent simulation entities used for LLRF
controls testing.

SOFTWARE INTERACTION

Even when a feedback control loop is implemented in an
FPGA additional complex signal processing is performed
in software. Since LLRF system configuration is evolving
towards increasing amount of software, testing techniques
should be adapted accordingly.

Simulation entities

A flexible hardware-software simulation environment
for LLRF system design is composed of three independent
entities: the LLRF controls in the FPGA, the RF model
(plant), and software devices (see Fig. 2). The functionality
of the FPGA and the software include the logic dealing
with communication tasks.

The HDL code to be synthesized in the FPGA is
simulated in a hardware simulator. The DSP part in the
hardware design interacts with an RF system via ADCs
and DACs. In parallel, the FPGA also interacts with
software devices via USB or Ethernet communication
channels.

The integrated simulation runs in virtualized-time. This
means that the response of every element in the system has
been characterized according to this simulation time step
variable, corresponding to the FPGA clock period. Then
the interactions among simulation entities are also simu-
lated considering the time variable.

Abstraction of communication channels

The communication channels in our system are ADCs
and DACs for the feedback loop, and USB or Ethernet for
the FPGA-software link. Both the HDL code in the FPGA
and software can be entirely characterized using simulation
tools, obtaining their exact response to a given excitation.
The RF system has been modeled in software so we can
obtain its response every simulation step.

• FPGA - RF System

As the analog components, the physical communication
links in the system are not present in simulation and need
to be characterized. The RF model includes noise sources
due to A/D conversion, as well as quantization error. Thus,
in simulation, the RF model reads the FPGA register
containing the control signal, calculates the RF system

Proceedings of EPAC08, Genoa, Italy TUPC153

07 Accelerator Technology Main Systems T25 Low Level RF

1429



FABRICPLANT (C) HOST (C)

USB / Ethernet / Inter−process

Process Verilog Simulator Process

IF IF

TRANSPORTVPI

FILE

TRANSPORT

Figure 3: Communication layers in the simulation environ-
ment.

response to that excitation, and places the signal coming
from the ADCs into the corresponding FPGA register.

The RF model is coded in C, and the HDL used is
Verilog. For their interface, Verilog Procedural Interface
(VPI) is used. It allows behavioral Verilog code to invoke
C functions, and C functions to invoke standard Verilog
system tasks.

In practice, a top-level Verilog test-bench instantiates the
FPGA fabric as it will be synthesized in the chip. Then,
in a hardware simulator, it runs the system for a number
of cycles. Every FPGA clock cycle (corresponding to a
simulation step), a routine in C is called to obtain the RF
system response. That routine gets the control signal from
the FPGA as an input argument, and delivers the signal(s)
coming from the ADC(s) as output(s), whose values are
connected to the FPGA inputs to close the loop.

• FPGA - Software

FPGAs are capable of communicating with software
devices via USB or Ethernet. These protocols use very
precise data formats, and have a limited bandwidth. In
simulation, and for our purposes, there is no interest in
modeling the complexity of the physical layer. Therefore
the logic in the FPGA, and the software layers dealing
with communication purposes are tested abstracting the
physical data transfer.

A different system clock is used for communication
with computers, and clock domain crossing is performed
using data strobes. The FPGA will assert a data strobe
when data is ready to be sent, and will check the status of
a different data strobe for the availability of the incoming
data.

Fig. 3 shows the communication layers in the simulation
environment. A communication controller in the FPGA,
and a driver in the computer will exchange data with the
USB or Ethernet communication link. A transport layer
will exchange data with them at both ends, being indepen-
dent of the physical layer. The interaction of the FPGA and
the computer with the communication layer is identical in
simulation and in a real system.

Driver-level testing

In simulation, the hardware simulator is running on one
process, and the software entity is running on a different
one. Then, an inter-process communication link is estab-
lished to replace the physical link, being the transport layer
independent of the communication channel.

At the FPGA level, the data transfers are simulated in
the virtualized-time environment. For this purpose, an
interface layer (IF in Fig. 3) performs the correspondence
between the data transfer using inter-process communi-
cation (simulation), and that using USB or Ethernet (real
system). The data will be available at a given register, and
the data strobe asserted at exactly the same pace as if it
were transferred via a physical channel.

VPI is used to make the link between the inter-process
communication entities and the Verilog simulator. It al-
lows to read and write FPGA registers with zero simulation
latency. Then, the IF module will synchronize that data to
emulate real conditions of the communication channel. Ad-
ditional data can be exchanged using files combined with
the inter-process communication for transfer synchroniza-
tion.

CONCLUSIONS

The hardware-software simulation environment re-
produces working conditions of the FPGA, including
communication with software devices. LLRF configura-
tion is evolving towards increasing amounts of software.
Testing techniques used here allow validation of the FPGA
design, software algorithms used for complex signal
processing, and the communication between the FPGA
and computers via standard hardware such as USB or
Ethernet.

A modular RF model has been implemented in software
for optimal computational speed, and reliability, allowing
a high level of flexibility in its configuration. Finally the
hardware design that is to be synthesized in the FPGA, soft-
ware running in computers, the RF model and their inter-
action are simulated in an integrated, virtualized-time en-
vironment using all free-software tools. An application of
the hardware-software simulation is described in [3].

REFERENCES

[1] Mark Stein, “Crossing the abyss: asynchronous signal in a
synchronous world,” EDN Magazine, July 24, 59-69 2003

[2] Matthew P. Donadio, “CIC Filter Introduction,” July 18, 2000

[3] C. Serrano, L. Doolittle, A. Ratti, A. Vaccaro, “Ensemble
cavity control system simulation using pulse-to-pulse calibra-
tion,” EPAC08, June 2008, Genoa, http://www.JACoW.org

TUPC153 Proceedings of EPAC08, Genoa, Italy

07 Accelerator Technology Main Systems

1430

T25 Low Level RF


