A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Sagan, D.

Paper Title Page
MOPC056 Challenges for Beams in an ERL Extension to CESR 190
 
  • G. Hoffstaetter, I. V. Bazarov, S. A. Belomestnykh, M. G. Billing, G. W. Codner, J. A. Crittenden, B. M. Dunham, M. P. Ehrlichman, M. J. Forster, S. Greenwald, V. O. Kostroun, Y. Li, M. Liepe, C. E. Mayes, H. Padamsee, S. B. Peck, D. H. Rice, D. Sagan, Ch. Spethmann, A. Temnykh, M. Tigner, Y. Xie
    CLASSE, Ithaca
  • D. H. Bilderback, K. Finkelstein, S. M. Gruner
    CHESS, Ithaca, New York
 
  Cornell University is planning to build an Energy-Recovery Linac (ERL) X-ray facility. In this ERL design, a 5 GeV superconducting linear accelerator extends the CESR ring. Currently CESR is used for the Cornell High Energy Synchrotron Source (CHESS). The very small electron-beam emittances would produce an x-ray source that is significantly better than any existing storage-ring light source. However, providing, preserving, and decelerating a beam with such small emittances has many issues. We describe our considerations for challenges such as optics, space charge, dark current, coupler kick, ion accumulation, electron cloud, intra beam scattering, gas scattering, radiation shielding, wake fields including the CSR wake, and beam stabilization.  
TUPP041 CSR Shielding in the Beam Dynamics Code BMAD 1634
 
  • G. Hoffstaetter, C. E. Mayes, U. Sae-Ueng, D. Sagan
    CLASSE, Ithaca
 
  Short bunches radiate coherently at wavelengths that are longer than their bunch length. This radiation can catch up with the bunch in bends and the electromagnetic fields can become large enough to significantly damage longitudinal and transverse bunch properties. This is relevant for many accelerators that relies on bunch compression. It is also important for Energy Recovery Linacs, where spent beams are decelerated by a potentially large factor. Because this deceleration increases the relative energy spread, all sources of wake fields, especially Coherent Synchrotron Radiation (CSR), become much more important. In this paper we show how the beam dynamics code BMAD computes the effect of CSR and how the shielding effect of vacuum chambers is included by the method of image charges. We compare the results to established codes: to Elegant for cases without shielding and to a numerical solution of simplified Maxwell equations as well as to analytical csr-wake formulas. Good agreement is generally found, and in cases where numerical solutions of the simplified Maxwell equations do not agree with the csr-wake formulas, we show that BMAD agrees with these analytic formulas.