A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Rodriguez, J. A.

Paper Title Page
TUPP008 An Automatic Control System for Conditioning 30 GHz Accelerating Structures 1541
 
  • A. Dubrovsky, J. A. Rodriguez
    CERN, Geneva
 
  A software application programme has been developed to allow fast, automatic, conditioning of the accelerating structures to be high-gradient tested at 30 GHz in CTF3. The specificity of the application is the ability to control a high power electron beam which produces the 30 GHz RF power used to condition the accelerating structures. It significantly increases the amount of time useable for high power conditioning. In this paper this fast control system, the machine control system, the logging system, the graphic user control interface and the logging data visualization are described. An outline of the conditioning control system itself and of the feedback controlling peak power and pulse length is given. The software allows different types of conditioning strategies to be programmed.  
TUPD040 Design, Manufacturing and Tests of a Micrometer Precision Mover for CTF3 Quadrupoles 1517
 
  • F. Toral, C. Burgos, D. Carrillo, L. García-Tabarés, J. L. Gutierrez, I. Rodriguez, E. Rodríguez García, S. Sanz, C. Vazquez
    CIEMAT, Madrid
  • E. Adli, N. C. Chritin, S. Doebert, J. A. Rodriguez
    CERN, Geneva
  • J. Calero
    CEDEX, Madrid
 
  A new remotely controlled moving table has been designed for the quadrupoles of the CTF3 Test Beam Line, as part of the beam based alignment system. This device must provide both vertical and horizontal (transverse to the beam) movements. The specifications request a reproducibility of ± 5 micron, with a resolution of 1 micron and a stroke of ± 4 mm. Due to the weight of the magnet, about 50 kg, and the space restrictions, a solution based on small stepping motors with integrated linear spindles has been chosen. The motor responsible of the vertical movement rests on a wedge, with a double purpose: to make the design more compact, and to increase the lifting force for a given motor size. Mechanical switches are used as end-of-movement sensors and home position detectors. The performed tests to check the mover prototype performance are also reported in this paper. Next step will be to launch series production, which will consist of 16 units.