A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Ramos, D.

Paper Title Page
TUPD035 Modeling of the RF-shield Sliding Contact Fingers for the LHC Cryogenic Beam Vacuum Interconnects Using Implicit and Explicit Finite Element Formulations 1503
 
  • D. Ramos
    CERN, Geneva
 
  The short interconnect length between the LHC superconducting magnets required the development of an optimised RF shielded bellows module, with a low impedance combined with compensation for large thermal displacements and alignment lateral offsets. Each bellows is shielded by slender copper-beryllium fingers working as pre-loaded beams in order to provide a constant force at the sliding contact. Unless the sliding friction and some geometrical parameters of the fingers are kept within a limited range, a large irreversible lateral deflection towards the vacuum chamber axis may occur and eventually block the beam aperture. The finite element analysis presented here simulates this failure mechanism providing a complete understanding of the finger behavior as well as the influence of the various design parameters. An implicit non-linear two-dimensional model integrating friction on the sliding contacts, geometrical non-linearity and plasticity was implemented in a first stage. The design was then verified through the whole working range using an explicit formulation, which overcame the instabilities resulting from the sudden release of internal energy stored in the finger.