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Abstract 
The short interconnect length between the LHC 

superconducting magnets required the development of an 
optimised RF shielded bellows module, with a low 
impedance combined with compensation for large thermal 
displacements and alignment lateral offsets. Each bellows 
is shielded by slender copper-beryllium fingers working 
as pre-loaded beams in order to provide a constant force 
at the sliding contact. Unless the sliding friction and some 
geometrical parameters of the fingers are kept within a 
limited range, a large irreversible lateral deflection 
towards the vacuum chamber axis may occur and 
eventually block the beam aperture. The finite element 
analysis presented here simulates this failure mechanism, 
providing a complete understanding of the finger 
behaviour as well as the influence of the various design 
parameters. An implicit non-linear two-dimensional 
model integrating friction on the sliding contacts, 
geometrical non-linearity and plasticity was implemented 
in a first stage. The design was then verified through the 
whole working range using an explicit formulation, which 
overcame the instabilities resulting from the sudden 
release of internal energy stored in the finger. 

INTRODUCTION 
The 27 km long LHC particle accelerator required the 

development of superconducting magnet interconnect 
components, which had to be designed according to a set 
of stringent specifications [1]. Among these components, 
are the interconnect plug-in modules (PIM), installed in 
the machine as a pre-assembled module, comprising an 
expansion joint and an RF-bridge shielding, which 
compensates for the magnets thermal displacements and 
ensure electrical continuity. In a typical arc interconnect 
with a 50 mm diameter beam vacuum chamber, the RF-
bridge is composed of 30 fingers, about 100 mm long, 
which work as spring loaded cantilevered beams in order 
to provide the minimum contact force required to achieve 
a total interconnect resistance under 100 µΩ at operating 
conditions. Additionally, the design thickness of 0.3 mm 
and width 3.6 mm, material properties and finger shape 
had to be chosen in order to prevent the collapse of the 
finger during the compression stroke seen by the PIM 
during the warm-up of the magnets. After the design 
validation through prototypes and a test campaign on the 
full-scale magnet String II [2], a total of 3800 units were 
fabricated and delivered at CERN as ready to install 
assemblies. 

With the interconnect installation still on-going, the 
first sector to be completed had to be warm-up for 
consolidation work after a first cool-down. Unexpectedly, 

six PIM units, out of the 382 in that arc, where found with 
some fingers plastically deformed into the beam aperture. 
Although a mechanical analysis had been performed 
during the design phase [3], an in-depth analysis based on 
more detailed models was found necessary in order to 
fully characterise the failure mechanisms involved and 
assess the influence of each design parameter. 

 
Figure 1-Section of a plug-in module showing the contact 
fingers and guiding tubes forming the RF-bridge. 

 
Figure 2 – Main geometrical parameters of the contact 
finger characterising its shape before assembly.  

The fingers are made of copper beryllium C17410 
TH02 sheet, cut by wire electro-erosion, cold formed to a 
specific shape (Figure 2) and finally laser welded to a 
copper transition piece. A 5 µm gold coating, deposited 
by electroplating, provides a low resistance at the contact 
with the inner copper transition tube. The latest is coated 
with a 3 µm thick rhodium layer in order to prevent cold 
welding in ultra-high vacuum. The contact force is 
ensured by a second contact at the tip of the finger, 
against a stainless steel guiding conical tube. The 6º angle 
of this cone was set to provide a nearly constant contact 
force at the Rh-Au contact over the working range of the 
PIM.  

During the magnet warm-up stroke, the finger is 
subjected to an axial compression load that results from 
the friction at the two contacts, finger/inner tube (Au/Rh) 
and finger/outer tube (Au/316LN) plus a bending moment 
with magnitudes depending on the relative position of the 
contact points. Being under compression, the stability of 
the finger is largely influenced by the distance between 
the Au/Rh contact and the extremity welded to the copper 
transition, defined as span (S). The span at cold depends 
on the lengths of the interconnected magnets, mechanical 
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tolerances and temperature differences during
or warm-up. 

IMPLICIT NON-LINEAR 2D ANA
A system composed by the finger, the cont

inner copper tube and the contact with the o
stainless steel cone was implemented in AN
element code [4].The finger was modelled w
two node, beam elements with capability
material plasticity. The 2D model repre
structure was loaded through a command text
in order to be fully parametric. As such,
geometry, material properties and real consta
easily made to vary either by changing the p
the input file manually, or using ANSYS p
language. The contacts were implemented 
elements based on the augmented Lagrangia
Both contact surfaces with the copper and st
parts were modelled as rigid surfaces. A circ
0.5 mm models the contact point with the inn
a straight line with the same inclination 
simulates the outer guiding tube at the region
An elasto-plastic bilinear model was used to
finger material properties at cold. Tensile te
resulted in a Young modulus of 154 GPa, yie
MPa and a plastic modulus of 574 MPa [5]
behaviour resulting from large displacements
taken into account. 

As compression of the PIM starts with 
fingers already pre-stressed, two load s
necessary. In the first load step, the finger is b
initial shape by moving the cone surface fro
upper position towards the finger. During this
finger is pushed by the cone surface against
point representing the inner tube. At the end
step the finger is in a load state equivalent
working position in the machine. The secon
simulates the magnets warm-up, which is seen
as a compression stroke, through a
displacement applied at the welded extrem
finger. 

Static friction between clean surfaces in vac
and, therefore, plays a major role in the beha
finger. Both contacts were modelled 
Coulomb’s friction. One of the challeng
simulation was the numerical instabilities ind
sliding contacts, which difficult the converg
Newton-Raphson algorithm used in the code
help the convergence, a small pressure, equiv
than two orders of magnitude lower than
contact force, was applied on the opposite 
finger to prevent chattering due to numerical i

Although the friction coefficients of the t
are different, their values could not be 
independently. A single friction coefficient 
both, which can be seen as an equivalent valu
result in the same compression force in the fin
the Au/Rh contact point and the welded extre

ing cool-down 
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Figure 4 – Deformed finger with nominal geometry (top) 
during the machine warm-up. Simulation result for a non-
conforming geometry corresponding to a PIM found 
damaged after the first LHC sector warm-up (bottom). 

VERIFICATION WITH AN EXPLICIT 
FORMULATION 

Given the consequences of a finger failure to the 
machine operation, the design must have a large margin 
of safety for all parameter variations, including friction. 
The implicit model could simulate the finger behaviour 
for friction values around those measured in the tests, but 
it showed its limitations when the friction was increased. 
For hypothetical high values of friction coefficient, for 
example due to defects in the surface coatings, the finger 
may become trapped between the two contacts and not 
slide immediately as the PIM compression starts. During 
this process the finger is subjected to an increasing 
bending moment, storing internal energy. As the 
compression continues, the geometry of the finger makes 
that this bending is in a direction that gradually reduces 
the contact normal forces, until the point when the friction 
can no longer balance the reaction forces. The internal 
energy is then rapidly released with a fast movement of 
the finger tip. This point in a force-displacement curve 
corresponds to a zero derivative that cannot be overcome 
by the Newton-Raphson solver of an implicit formulation. 
In order to fully demonstrate the design tolerance to high 
friction, the explicit code from ABAQUS [8] was used to 
perform a dynamic analysis on the baseline finger design, 
with a friction coefficient of 2.0. Since the real PIM 
compression process is quasi-static through most of the 
stroke, the analysis time of the corresponding load step 
had to be much lower than the period of the first natural 
mode of the finger (aproximately 0.06 s), such that 
artificial dynamic effects do not compromise the results. 
The time intervals were 0.05 s and 1 s in the first and 
second steps, respectively.  

The results are presented in Figure 5. The top graph 
shows the difference between the movement of the tip and 
the compression stroke. The finger is initially blocked and 
stores internal energy, but once the friction forces become 
lower than the sliding threshold, that energy is suddenly 
released in the form of kinetic energy. From that point on, 
the finger slides as expected. The maximum equivalent 
stress was 370 MPa, well below the elastic limit. 

 
Figure 5 – Difference in axial displacement between the 
welded end and the tip of the finger (top) as a function of 
the span during a compression stroke, for a friction 
coefficient of 2.0. Internal and kinetic energy (bottom). 

CONCLUSIONS 
A detailed analysis of the contact fingers, simulating 

the quasi-static sliding friction and non-linear material 
behaviour, allowed to acquire an in-depth understanding 
of the mechanisms that may lead to failure of the PIM RF 
bridge during magnet warm-up. It was shown that the 
failures occurred in the LHC were due to a manufacturing 
non-conformity on the geometry. The combination of 
results from the implicit and explicit models allowed to 
conclude that the initial baseline design is not only 
compatible with all the requirements, but also has a large 
safety margin against finger collapse. Failure only occurs 
for largely out-of tolerance fingers installed between 
magnets in configurations that have large finger spans at 
cold. The explicit model also allowed the simulation of 
the finger behaviour throughout the full compression 
stroke with high friction, proving that the design is safe 
even if, for uncontrolled reasons, the friction in some 
fingers is much higher than expected. 
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