A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Oriunno, M.

Paper Title Page
TUPP029 Beam Coupling Impedance Measurement and Mitigation for a TOTEM Roman Pot 1598
 
  • M. Deile, F. Caspers, T. Kroyer, M. Oriunno, E. Radermacher, A. Soter
    CERN, Geneva
  • F. Roncarolo
    UMAN, Manchester
 
  The longitudinal and transverse beam coupling impedance of the first final TOTEM Roman Pot unit has been measured in the laboratory with the wire method. For the evaluation of transverse impedance the wire position has been kept constant, and the insertions of the RP were moved asymmetrically. With the original configuration of the RP, resonances with fairly high Q values were observed. In order to mitigate this problem, RF-absorbing ferrite plates were mounted in appropriate locations. As a result, all resonances were sufficiently damped to meet the stringent LHC beam coupling impedance requirements.  
MOPP031 Challenges and Concepts for Design of an Interaction Region with Push-pull Arrangement of Detectors - an Interface Document 616
 
  • A. Seryi, T. W. Markiewicz, M. Oriunno, M. K. Sullivan
    SLAC, Menlo Park, California
  • D. Angal-Kalinin
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • B. Ashmanskas, V. R. Kuchler, N. V. Mokhov
    Fermilab, Batavia, Illinois
  • K. Buesser
    DESY, Hamburg
  • P. Burrows
    OXFORDphysics, Oxford, Oxon
  • A. Enomoto, Y. Sugimoto, T. Tauchi, K. Tsuchiya
    KEK, Ibaraki
  • A. Herve, J. A. Osborne
    CERN, Geneva
  • A. A. Mikhailichenko
    Cornell University, Department of Physics, Ithaca, New York
  • B. Parker
    BNL, Upton, Long Island, New York
  • T. Sanuki
    Tohoku University, School of Scinece, Sendai
  • J. Weisend
    NSF, Arlington
  • H. Y. Yamamoto
    Tohoku University, Sendai
 
  Two experimental detectors working in a push-pull mode has been considered for the Interaction Region of the International Linear Collider [1]. The push-pull mode of operation sets specific requirements and challenges for many systems of detector and machine, in particular for the IR magnets, for the cryogenics system, for alignment system, for beamline shielding, for detector design and overall integration, and so on. These challenges and the identified conceptual solutions discussed in the paper intend to form a draft of the Interface Document which will be developed further in the nearest future. The authors of the present paper include the organizers and conveners of working groups of the workshop on engineering design of interaction region IRENG07 [2], the leaders of the IR Integration within Global Design Effort Beam Delivery System, and the representatives from each detector concept submitting the Letters Of Intent.