A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Ogata, A.

Paper Title Page
TUPP121 Spatial Resolution and Contrast of the Intensity Modulated Electron Beam by the Photocathode RF Gun for the Radiation Therapy 1809
 
  • T. Kondoh, K. Kan, H. Kashima, K. Norizawa, A. Ogata, S. Tagawa, J. Yang, Y. Yoshida
    ISIR, Osaka
 
  The radiation therapy of cancer is developing to un-uniform irradiation as the Intensity Modulated Radiation Therapy (IMRT), for reduce dose to normal tissue. Toward the IMRT, optical modulation of electron beam is studying by a photocathode RF gun. The photocathode RF gun can generate a low emittance electron beam by laser light. Because of the low emittance beam, the modulated electron beam is able to accelerate keeping shape. Electron beam were monitored by CCD cameras measuring the luminescence of the scintillator. Fundamental data such as the spatial resolution and the contrast of the optical intensity modulated electron beam are necessary. Spatial Resolution and Contrast of the Intensity Modulated Electron Beam by a Photocathode RF Gun will be reported. If the shape of the modulated electron beam is different, it may not keep beam shape from the non-symmetrically of the repulsion of the bunch inside. It will be reported that the relations of the beam-shape and the keeping ability of beam.  
TUPP143 Collective Ionization by Attosecond Electron Bunches 1851
 
  • A. Ogata, T. Kondoh, K. Norizawa, J. Yang, Y. Yoshida
    ISIR, Osaka
 
  Present accelerator technology has realized linac bunch length on the order of femtosecond. If the bunch length becomes onto the order of attosecond, its inverse is comparable to the ionization frequency; ionization potential divided by Plank's constant. The stopping power then becomes proportional to square of the number of bunch electrons. Such a bunch ionizes the target collectively. This collective, or coherent ionization will provide us plenty of applications including unknown ones at the present. This phenomenon has historically been expected in cluster beams, which can be regarded as ultra-short bunches. The present paper adapts formalism of stopping power of a medium characterized by a dielectric function against cluster beams to that against electron bunches. It then describes some numerical calculations on the collective ionization by the attosecond electron bunches.