A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Obradors-Campos, D.

Paper Title Page
TUOBM01 Advanced Design of the FAIR Storage Ring Complex 1004
 
  • M. Steck, C. Dimopoulou, A. Dolinskii, O. E. Gorda, V. Gostishchev, K. Knie, S. A. Litvinov, I. Nesmiyan, F. Nolden, D. Obradors-Campos, C. Peschke
    GSI, Darmstadt
 
  The storage ring complex of the FAIR comprises three storage rings with a magnetic rigidity of 13 m. Each of the three rings, CR, RESR, and NESR, serves specific tasks in the preparation of secondary beams, rare isotopes and antiprotons, or for experiments with heavy ion beams. The CR is optimized for fast stochastic pre-cooling of secondary beams. The RESR design has been recently revised for optimum performance of antiproton accumulation. The concept for the installation of both rings in a common building is elaborated. The ion optical and engineering design of the NESR for experiments with heavy ions, the deceleration of ions or antiprotons for a subsequent low energy facility, and the accumulation of rare isotope beams is proceeding. A section for collision experiments with circulating ions and counter propagating electrons or antiprotons has been worked out. This report will give a summary of the various new concepts conceived in the process of the design of this new storage ring facility.  
slides icon Slides  
THPC011 The CR-RESR Storage Ring Complex of the FAIR Project 2996
 
  • A. Dolinskii, O. E. Gorda, S. A. Litvinov, F. Nolden, C. Peschke, I. Schurig, M. Steck
    GSI, Darmstadt
  • D. Obradors-Campos
    MICINN, Madrid
 
  In frame of the FAIR project (at GSI, Germany) the CR-RESR storage ring complex has been designed for efficient cooling, accumulation and deceleration of antiproton and rare isotopes beams. The complex consists of the Collector Ring (CR) and the accumulator / decelerator ring RESR. The large acceptance CR will be operated at three different optical modes, two of them providing fast pre-cooling of antiprotons and rare isotopes. This ring will be also used as an instrument for mass measurements of very short-lived nuclei when tuned to an isochronous mode. The RESR will be used as accumulator of the antiprotons by means of the stochastic cooling technique and as a decelerator of rare isotopes. The structure of the CR and RESR lattices and its ion optical properties are described in this contribution. The beam dynamics of these rings at different operation scenario are discussed.