A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Norris, B.

Paper Title Page
TUPP088 Software Components for Electron Cloud Simulation 1735
 
  • D. R. Dechow, P. Stoltz
    Tech-X, Boulder, Colorado
  • J. F. Amundson, P. Spentzouris
    Fermilab, Batavia, Illinois
  • B. Norris
    ANL, Argonne, Illinois
 
  The Synergia2 beam dynamics code is an attempt to incorporate state-of-the-art space charge models from the Impact code into the Chef accelerator tracking code. The need to add new accelerator physics capabilities to the Synergia2 framework has led to software development efforts based on the Common Component Architecture (CCA). The CCA is a specification and a toolset for developing HPC from interchangeable parts, called components. Electron cloud is a potentially limiting effect in the performance of both high-intensity electron and proton machines. The modeling of electron cloud effects is important for the Fermilab main injector. Here, electron cloud effects are expected to play a significant role when the main injector operates in the regime of a high-intensity proton source for the neutrino program. In the ideal case, computational accelerator physicists would like to be able model electron cloud generation and dynamics in a single, self-consistent simulation. As a first step towards creating component-based, electron cloud generation simulations, this work describes a CCA component created from TxPhysics, a library of impact and field ionization routines.