
SOFTWARE COMMM

Douglas Ricker Dechow, Peter Stoltz, Tech-X Corp., Boulder, CO 80303, USA
Boyana Norris ANL, Argonne, IL 60439, USA

James Frederick Amundson, Fermilab, Batavia, IL 60510, USA

Abstract

The Synergia2 beam dynamics code is an attempt to in-
corporate state-of-the-art space charge models from the Im-
pact code into the Chef accelerator tracking code. The need
to add new accelerator physics capabilities to the Syner-
gia2 framework has led to software development efforts
based on the Common Component Architecture (CCA).
The CCA is a specification and a toolset for developing
HPC from interchangeable parts, called components.

Electron cloud is a potentially limiting effect in the per-
formance of both high-intensity electron and proton ma-
chines. The modeling of electron cloud effects is important
for the Fermilab main injector. Here, electron cloud effects
are expected to play a significant role when the main injec-
tor operates in the regime of a high-intensity proton source
for the neutrino program. In the ideal case, computational
accelerator physicists would like to be able model electron
cloud generation and dynamics in a single, self-consistent
simulation. As a first step towards creating component-
based, electron cloud generation simulations, this work de-
scribes a CCA component created from TxPhysics, a li-
brary of impact and field ionization routines.

INTRODUCTION
Electron cloud is one of the most important factors ef-

fecting the dynamics of particle beams. Electron cloud is a
potentially limiting effect in the performance of both high-
intensity electron and proton machines. In addition, the
simulation of electron cloud effects pose, at least, two sig-
nificant computational challenges. The first challenge is
due to the multi-species nature of electron cloud simula-
tions. Electron cloud simulations consist of primary beams
and electrons. The second challenge results from the large
number of particles which are necessary for these simula-
tions.

Computational modeling and simulation of particle ac-
celerators is a foundational tool for understanding the
full life-cycle of accelerators: analysis, design, opti-
mization, and upgrading. The Community Petascale
Project for Accelerator Science and Simulation (COM-
PASS) https://compass.fnal.gov/, a DOE Scientific
Discovery through Advanced Computing (SciDAC-2) pro-
gram with funding from the Offices of HEP, NP, BES
and the Office of Advanced Scientific Computing Research
(ASCR), is tasked with developing a “comprehensive set of
interoperable components for beam dynamics, electromag-
netics, electron cooling, and advanced accelerator model-
ing.” [6]

As a part of the COMPASS project, we are pursuing the
development a component-based modeling tool for sim-
ulating one of the most pervasive issues in accelerator
physics, the electron cloud effect (ECE) [5]. The ECE is
an interaction between the particles in accelerator and un-
wanted electrons that come from residual background gas
or the accelerator walls. In some cases, the ECE can cause
the number of unwanted electrons to grow exponentially
and degrade the quality of the beam in the accelerator to the
point that the beam is destroyed. The ECE modeling tool
we plan to develop will include components derived from
the COMPASS SciDAC codes, Synergia and TxPhysics.

BACKGROUND

The modeling of electron cloud effects is important for
projects such as the ILC damping ring and the Fermilab
main injector. In the case of the Fermilab main injector,
electron cloud effects are expected to play a significant role
when the main injector operates in the regime of a high-
intensity proton source for the neutrino program. In the
ideal case, computational accelerator physicists would like
to be able model electron cloud generation and dynamics
in a single, self-consistent simulation.

In this section, we discuss Synergia2, the Common Com-
ponent Architecture (CCA), and TxPhysics.

SYNERGIA2

The Synergia2 application is a hybrid, multi-language,
computational science framework developed at Fermi Na-
tional Accelerator Laboratory (Fermilab) for modeling
beam dynamics of high-energy accelerators. The Syner-
gia2 framework tracks the position and velocity of simu-
lated particles as they move along the length of the accel-
erator. The analytic approximation model for the magnetic
force calculations makes use of the Chef beam dynamics
application developed at Fermilab. Synergia2 also mod-
els in a self-consistent way particle space charge forces in
three dimensions. Currently, the space charge calculations
can be completed by two separate solvers; the Fortran 90
based Impact code [7], developed at Los Alamos National
Laboratory and presently maintained at Lawrence Berkeley
National Laboratory; and the C++-based Sphyraena solver
which has recently been developed at Fermilab.

ONENTS FOR ELECTRON CLOUD SIMMP LATIONSMU

Proceedings of EPAC08, Genoa, Italy TUPP088

05 Beam Dynamics and Electromagnetic Fields D05 Code Developments and Simulation Techniques

1735

Table 1: The implementation languages of the Synergia2
scientific packages and libraries.

Packages Python C++ C F90 F77
Synergia2-
Simulations

X

Synergia2-
Sphyraena

X

Synergia2-
IMPACT

X

Synergia2-
Chef

X

MaryLie/
IMPACT

X X

TxPhysics X

Common Component Architecture (CCA)
The Common Component Architecture (CCA) [1] is a

specification and a toolset for developing scientific soft-
ware from interchangeable parts, components.

The most basic unit of interaction between CCA compo-
nents is the port. A port is analogous to a method in a OO
language or a function, procedure, or subroutine in a proce-
dural langauge. CCA port relationships are defined by the
Provides/Uses design pattern. As such, they come in two
flavors:

1. A providesPort defines a protocol that will be sup-
ported by the component implementation.

2. A usesPort specifies that a component will interact
with another component by means of the protocal de-
scribed in its providesPort

Additionally, because Synergia2 is a hybrid software ap-
plication that is comprised of software libraries and tools
which are written in several different languages, multi-
language interoperability is of paramount importance to the
current and planned work. Table 1 contains a matrix de-
lineating the Synergia2 project packages and libraries and
their respective implementation languages that will be used
to develop electron cloud simulations.

OASCR has funded the Babel project [4, 2] as a tool
for the general language interoperability problem. Unlike
other language interoperability solutions, Babel specializes
in high performance and in the support of FORTRAN 77
and Fortran 90 through the use of CHASM [8]. In the Ba-
bel system, users define their types using the Scientific In-
terface Definition Language (SIDL). The Babel compiler
then generates glue-code for each language. The Babel
runtime library provides basic facilities and infrastructure
to keep the model consistent. At present, Babel supports
FORTRAN 77, Fortran 90, Python, Java, C, and C++ and
so removes language interoperability concerns from the de-
velopers. An example of SIDL usage is provided in Sec-
tion .

TxPhysics
Currently, developing ECE simulations usually requires

two separate codes in order to capture two distinct physics
effects: (i) cloud generation, and (ii) cloud beam dynamics
beam. Most simulation codes can model the generation or
the dynamics, but not both (WARP+POSINST does model
both effects). In normal usage scenarios, the POSINST
code models cloud generation, but not beam dynamics.
Similarly, the Synergia code models beam dynamics but
not cloud generation.

The TxPhysics library provides physics routines used by
WARP to handle electrons created by ions striking walls in
the simulation. While TxPhysics is written in C, WARP
calls the relevant TxPhysics routines through a Python In-
terface.

RELATED WORK

In a previous project, we prototyped a beam dynam-
ics application based on CCA-compliant software compo-
nents [3]. As an example of the type of components that
were created for the previous project, we will describe the
linear beam optics component that was created to wrap
services provided by MaryLIE/IMPACT (ML/I). Our work
centered on the most basic of optics algorithms, those rep-
resenting dipole and quadrupole magnets.

The BeamOpticsPort port encapsulates tasks related to
the application of transfer maps to the particles in the beam.
The SIDL code used to encode the BeamOpticsPort port
abstraction is shown below.

1 i n t e r f a c e BeamOpt ic sPor t ex tends gov . cca . P o r t
2 {
3 void i n i t i a l i z e () ;
4 void fquad3 (i n double l ,
5 i n double gb0 ,
6 i n o u t a r r a y <double , 1 , column−major> h ,
7 i n o u t a r r a y <double , 2 , column−major> mh) ;
8

9 void dquad3 (i n double l ,
10 i n double gb0 ,
11 i n o u t a r r a y <double , 1 , column−major> h ,
12 i n o u t a r r a y <double , 2 , column−major> mh) ;
13

14 void d r i f t 3 (i n double l ,
15 i n o u t a r r a y <double , 1 , column−major> h ,
16 i n o u t a r r a y <double , 2 , column−major> mh) ;
17 }

It is essentially a method-to-subroutine wrapping of the
ML/I subroutines that provide the services used by the
component. The BeamOptics component, written in For-
tran90, implements the BeamOpticsPort port.

CCA/SYNERGIA PROTOTYPE
APPLICATION

As a demonstration case for creating a CCA-
compliant component from a TxPhysics algorithm, the

TUPP088 Proceedings of EPAC08, Genoa, Italy

05 Beam Dynamics and Electromagnetic Fields

1736

D05 Code Developments and Simulation Techniques

get effective charge algorithm was chosen. This effort was
successful and is considered to be a first step in a series that
will lead to a component-based ECE solution.

Figure 1: The prototype TxPhysics component connected
to its driver.

The prototype component is shown along with its driver
component in Figure 1.

ONGOING AND FUTURE WORK
At this point in time, we believe that the realization of a

single tool to successfully model the ECE will require the
development of no fewer than four coarse-grained, macro
components:

• Synergia.BeamOptics: an ML/I component for obtain-
ing transfer maps

• SynergiaCCA.CloudGenComp: a proposed Synergia2
component for managing the electron cloud particles
produced during the generation phase

• SynergiaCCA.CloudDynComp: a proposed Synergia2
component for calculated the electron cloud dynamics

• SynergiaCCA.MacroBeamBunchComp: a recently de-
veloped Synergia2 component for managing the parti-
cles of a beam bunch in a 6-D representation

• SynergiaCCA.SphyraenaSolver: a recently developed
Synergia2 component for solving Poisson’s equation

Several of these components, including those such
as SynergiaCCA.MacroBeamBunchComp that were devel-
oped in a prior project, are shown in Figure 2.

REFERENCES
[1] D. E. Bernholdt, B. A. Allan, R. Armstrong, F. Bertrand,

K. Chiu, T. L. Dahlgren, K. Damevski, W. R. Elwasif,
T. G. W. Epperly, M. Govindaraju, D. S. Katz, J. A. Kohl,
M. Krishnan, G. Kumfert, J. W. Larson, S. Lefantzi, M. J.
Lewis, A. D. Malony, L. C. McInnes, J. Nieplocha, B. Norris,
S. G. Parker, J. Ray, S. Shende, T. L. Windus, and S. Zhou. A
component architecture for high-performance scientific com-
puting. Intl. J. High Perf. Comp. Appl., 20(2):163–202, 2006.

Figure 2: CCA/Synergia components for the ECE problem.

[2] T. Dahlgren, T. Epperly, and G. Kumfert. Babel User’s
Guide. CASC, Lawrence Livermore National Laboratory,
version 0.10.8 edition, July 2005.

[3] D. R. Dechow, B. Norris, and J. Amundson. The common
component architecture for particle accelerator simulations.
In CompFrame ’07: Proceedings of the 2007 symposium on
Component and framework technology in high-performance
and scientific computing, pages 111–120, New York, NY,
USA, 2007. ACM.

[4] Lawrence Livermore National Laboratory. Babel. http://

www.llnl.gov/CASC/components/babel.html, 2007.

[5] K. Ohmi. Physical Review Letters, 75:1526, 1995.

[6] Panagiotis Spentzouris (PI). Community Petascale Project
for Accelerator Science and Simulation (COMPASS). FNAL
DOCDB, CD-doc-2098, version 1, 2007.

[7] J. Qiang, R. D. Ryne, S. Habib, and V. Decyk. An Object-
Oriented Parallel Particle-in-Cell Code for Beam Dynamics
Simulation in Linear Accelerators. Journal of Computational
Physics, 163:434–451, Sept. 2000.

[8] C. E. Rasmussen, M. J. Sottile, S. Shende, and A. D. Mal-
ony. Bridging the language gap in scientific computing: The
Chasm approach. Concurrency and Computation: Practice
and Experience, 2005. to appear.

Proceedings of EPAC08, Genoa, Italy TUPP088

05 Beam Dynamics and Electromagnetic Fields D05 Code Developments and Simulation Techniques

1737

