A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Nakanishi, K.

Paper Title Page
MOPD014 First Test Results of ILC/STF Cryogenic System at KEK 472
 
  • S. Kaneda, T. Ichitani
    Taiyo Nippon Sanso Corporation, Kawasaki-city Kanagawa Pref.
  • K. Hara, K. Hosoyama, A. Kabe, Y. Kojima, H. Nakai, K. Nakanishi
    KEK, Ibaraki
  • T. Kanekiyo
    Hitachi Technologies and Services Co., Ltd., Kandatsu, Tsuchiura
  • M. Noguchi
    Mayekawa MFG. Co., Ltd., Moriya
  • S. Sakuma, K. Suzuki
    Taiyo Nippon Sanso Higashikanto Corporation, Hitachi-city, Ibaraki-Pref
  • J. Yoshida
    Hitachi Plant Technologies, Ltd., Tokyo
 
  The STF (Superconducting RF Test Facility) cryogenic system, of which capacity is 30W at 2.0K, has been constructed and commissioned for testing STF cryomodule. In the first operation phase, the STF cryogenic system was successfully cooled down to maintain a superconducting RF cavity at the working temperature of 2.0K. Presented in this session will be the results of the first operation of the cryogenic system and the future collaboration plan among KEK and Japanese cryogenic industrial members.  
WEPD020 Stability of Superconducting Wire in Magnetic Field 2449
 
  • K. Ruwali
    GUAS/AS, Ibaraki
  • K. Hosoyama, K. Nakanishi
    KEK, Ibaraki
  • Y. Teramoto, A. Yamanaka
    Toyobo Research Institute, Shiga
 
  Main cause of premature quench in superconducting magnet is the heat generated due to superconducting wire motion. The wire motion occurs where electromagnetic force to conductors exceeds frictional force on surfaces of the conductors. Hence, frictional properties of the conductors and winding structures are important parameters for characterizing stability of the superconducting windings. An experimental setup was prepared to detect wire movement by observing spike in voltage of the superconducting sample wire. A detailed study was carried out in order to study superconducting wire motion under different experimental conditions such as varying applied load to specimen wire, back up field, varying the interface of superconductor and base material. The base materials used are polyimide film and Dyneema. The Dyneema has low frictional coefficient and negative thermal expansion. In the case of Dyneema, it is found that amplitude of voltage generated due to wire motion reduces and also relatively smooth motion of wire is observed. These effects are attributed to the low frictional coefficient. The experimental observation will be discussed in detail.  
MOPP029 The First Measurement of Low-loss 9-cell Cavity in a Cryomodule at STF 610
 
  • T. Saeki, M. Akemoto, S. Fukuda, F. Furuta, K. Hara, Y. Higashi, T. Higo, K. Hosoyama, H. Inoue, A. Kabe, H. Katagiri, S. Kazakov, Y. Kojima, H. Matsumoto, T. Matsumoto, S. Michizono, T. Miura, Y. Morozumi, H. Nakai, K. Nakanishi, N. Ohuchi, K. Saito, M. Satoh, T. Takenaka, K. Tsuchiya, H. Yamaoka, Y. Yano
    KEK, Ibaraki
  • T. Kanekiyo
    Hitachi Technologies and Services Co., Ltd., Kandatsu, Tsuchiura
  • J. Y. Zhai
    IHEP Beijing, Beijing
 
  We are constructing Superconducting RF Test Facility (STF) at KEK for the R&D of International Linear Collider (ILC) accelerator. In the beginning of year 2008, we installed one high-gradient Low-Loss (LL) type 9-cell cavity into a cryomodule at STF, where we assembled an input coupler and peripherals with the cavity in a clean room, and the assembled cavity packages were dressed with thermal shields and installed into a cryomodule. At the room-temperature, we performed the processing of capacitive-coupling input-coupler upto the RF power of 250 kW. At the temperature of 4 K, we measured the loaded Q of the cavity and the tuner was tested. At the temperature of 2 K, high-power RF was supplied from a klystron to the cavity and the performance of the cavity packeage was tested. This article presents the results of the first test of the Low-Loss (LL) 9-cell cavity package at 2 K in a cryomodule.  
THXM02 Development of the KEK-B Superconducting Crab Cavity 2927
 
  • K. Hosoyama, K. Akai, K. Ebihara, T. Furuya, K. Hara, T. Honma, A. Kabe, Y. Kojima, S. Mitsunobu, Y. Morita, H. Nakai, K. Nakanishi, M. Ono, Y. Yamamoto
    KEK, Ibaraki
  • H. Hara, K. Okubo, K. Sennyu, T. Yanagisawa
    MHI, Kobe
 
  The development of the KEK-B superconducting crab cavity, including the design, production, tests and latest parameter performances should be described in this talk.  
slides icon Slides