

Development of the KEK-B Superconducting Crab Cavity

Crab Cavity for HER

Bunches kicked by crab cavity

K.Hosoyama#, K.Hara, A.Honma, A.Kabe, Y.Kojima, Y.Morita, H.Nakai, K.Nakanishi, K.Akai, K.Ebihara, T.Furuya, S.Mitsunobu, M.Ono, Y.Yamamoto, KEK, Tsukuba, Japan K. Okubo, K. Sennyu, H. Hara, T. Yanagisawa MHI Kobe Shipyard, Japan

Outline

- KEKB and Crab Crossing
- KEKB Crab Cavity Concept and R&D History
- Fabrication of Crab Cavities
- Cold Test in Vertical Cryostat
- Cryostat for Crab Cavities
- Coaxial Coupler
- Frequency Tuning
- Assembling of Crab Cavity into Cryostat
- High Power Test at Test Stand
- Installation & Commissioning of Crab Cavities
- •Summary

Crab Cavities for KEKB

KEKB Crab Crossing

The crab crossing scheme allows a large crossing angle collision without introducing any synchrotron-betatron coupling resonances. ^{1, 2)}

Advantage: We can use existing cryogenic system for Acc. S.C. cavities

Conceptual Design of KEKB Crab Cavity

Squashed Cell Shape Cavity Design

The squashed cell shape cavity scheme was studied by Akai extensively at Cornell in 1991 and 1992 for CESR-B under KEK-Cornell Univ. collaboration.

We adopted this design as "base design"!

KEKB Superconducting Crab Cavity

Mechanical and Fabrication Issues

 \Box

Non-axial Symmetric Structure Thickness of 4.5 mm Nb Cavity Reinforced by Ribs

Frequency	501.7 MHz
R/Q	46.7 Ω
G	220
Esp / Vkick	14.4 MV / m / MV
Hsp / Vkick	415 Oe / MV

History of KEKB Crab Cavity

0)	1/3 scale model 1.5 GHz3 Nb CavitiesFabrication & surface treatment of non-axial symmetry	1994 ic cavity		
1)	Full Scale Prototype Crab Cavity500MHz	1996		
	2 Nb Cavities #1 & #2 Coaxial Coupler		10 years	
	Prototype Horizontal Cryostat	2003		
2)	KEKB Crab Cavity509MHz			
	Installation of 2 crab cavities in KEKB was decided 2004			
	2 Nb Cavities for LER, HER			
Cold Tested in Vertical Cryostat 2005			3 years	
Assembling and High power test 2006				
Installation and Commissioning 2007			1 year	
		Jan.	\sim	

Construction of KEKB Crab Cavity collaboration with Industry & build up of infrastructure 1) Fabrication of the crab cavities and coaxial coupler MHI 2) Surface treatment Cell equator welding part Mechanical grinding **KEK/MHI** Barrel polishing KEK **Electro-Polishing** Nomura Plating Heat Treatment Kinzoku Giken High pressure rinsing **KEK** Clean room for assembling the crab cavity **KEK** 3) RF Measurement system at vertical cryostat KEK Test Stand in vertical cryostat 1.5 GHz 500 MHz 4) Horizontal cryostat Design and assembling of prototype KEK/Koike/Hitachi Oxygen Design and assembling of horizontal cryostat MHI Clean Room for Installation of the crab cavity into cryostat KEK 5) Input coupler and HOM damper MHI/Kinzoku Giken 6) Design and construction of cryogenic system **KEK/Hitachi** 7) Test Stand for high power RF test KEK

Fabrication & Surface Treatment

Forming of Half-Cells

Barrel Polishing 312Hr

High Pressure Water Rinsing

Electro Polishing

Annealing

Assembling

Grinding Machine

Crab cavity was assembled; full penetration, defocused electron beam welding. Inner surface of welding part along the equator of cell has line-like bump By using grinding machine we must remove it!

Effect of High Pressure Rinsing

1/3 Scale Model 1.5 GHz

By breaking the vacuum and introducing air into the cavity, the Q_0 degrade and increase the radiation of X-ray. High pressure rinsing can recover the performance of the cavity.

Clean Room for Assembling Cavity and Cryostat

Clean Room (Class 100) for Cavity Assembling

High Pressure Pure Water Rinsing

Clean Room for Cryostat Assembling

HPS : Coaxial coupler

HPS : Jacketed crab cavity

High Pressure Rinsing and Assembling for RF Cold Test

Set Flanges of Beam Pipes and Ports in Class 100 Clean Room

High Pressure Water Rinsing by 80 bar Ultra-Pure water

Rotation & Up-Down Motion

Cold Test Stand for KEKB Crab Cavity

The crab cavity is taken out from clean room to install into the vertical cryostat.

Test Result of KEKB Crab Cavity Prototype #1

Crab Cavity #2 Same Performance!

Fabrication and Surface Treatment RF Performance Test with a Coaxial Coupler Good! Multipacting could be overcome by RF process.

Multipactoring in Crab Cavity with Coaxial Coupler

Test Result of KEKB Crab Cavity for LER

Test result could not satisfy the design value! **Back to EP II processing.**

Prototype 35 [MV/m] 1st Test Nov. 29 2nd Test **Field Emission** EP₂ **Re-processing** Jan. 13 Test Recovered !

Inspection in the cavity

Picture of electron microscope

Conceptual Cryostat Design for KEKB Crab Cavity

Characteristics

Frequency Tuning Coaxial Coupler ~30 kHz / mm
Stub-Support -- Mechanical Support & Cooling of Coaxial Coupler
Jacket-type Helium Vessel (Main He Vessel and Sub He Vessel)
Jacket-type Magnetic Shield

Design and Fabrication of KEKB Crab Cavity Cryostat

•No design and construction examples

•Easy to assemble and disassemble under clean condition

•Compact and light weight for transportation

•Leak tight for long period operation stress free at In seal

Frequency tuning by coaxial coupler Jacket type helium vessel Main-Helium Vessel for Crab Cavity Sub-Helium Vessel for Coaxial Coupler

•Complex structure and challenging design

A prototype cryostat was designed, constructed and cold tested at KEK. R&D efforts for important components Bellows, End cell, Input coupler, HOM damper

Crab Cavity & Coaxial Coupler in Cryo-module

- 1) Crab Cavity is hanged by 4 invar support rods.
- 2) Coaxial coupler is hanged by 4 stainless rods which are supported by 2 support arms.
- 3) Head position of the coaxial coupler is controlled by 2 tuning rods.
- 4) Head of coaxial coupler is cooled by liq. helium supplied from stub support.

Cryostat for KEKB Crab Cavity

Forming of Helium Vessel End Shell

Main Helium Vessel	φ 920	2t
Sub Helium Vessel	φ 600	1.5t
Cryostat Vacuum Vessel	ф 1200	2t

φ 920 x 2 tMain helium vessel end shell

φ 600 x 1.5 t Sub helium vessel end shell

Bellows

To Increase the tuning range change to stainless steel with copper plating bellows!

Thickness t = 0.3 mm

Press Unit and Pressure Water Pump

Assemble & Cold Test of Prototype Cryostat

1) Jacket Type Helium Vessel

to Check the Leak Tight

2) Input Coupler

to Check Thermal Contraction

3) Without Coaxial Structure

Design and assembled in KEK

What cause the Leakage?

Input Coupler for KEKB Crab Cavity

High Power Test Stand

HOM Damper Ferrite RF Absorber

Same design used in KEKB Acc. SC cavity

Cavity 0.7 V/pC Taper 0.04 V/pC Damper 0.3 V/pC Total: 1.04 V/pC HOM power: 20.5 kW (1.6 A, 1300-bunch)

Magnetic Shield (Jacket Type)

Permalloy 3t

Frequency Tuner

Resonance frequency can be controlled by main tuner.Coaxial coupler position can be controlled by sub-tuner.

Frequency Tuner Crab Cavity for HER

Phase stability

Phase Stability by Mechanical Tuner

Phase Stability is improved by RF Feedback

Cooling System for KEKB Crab Cavity

Coaxial Structure Detail

RF Contact

Type : Spiral Material : BeCu Spring Constant : 14kg/φ94mm (0.5kg/cm)

Assembling the Coaxial Coupler

Inner Conductor of Stub Support

Nb Inner Conductor of Coaxial Coupler

Stub Support

Leak Check of Assembled Coaxial Coupler

Insertion Setup for Coaxial Coupler

Assembling Coaxial Structure to Crab Cavity

High Pressure Rinsing

•

Tuning Structure

Coaxial coupler was ready to install

- Inner conductor of the assembled coaxial coupler was high pressure rinsed.
- Head part of the coaxial coupler was installed in to the cavity and assembled.
- Coaxial coupler was hanged by 4 rods which were connected to 2 support arms.

Assembling Large Beam Pipe

Large beam pipe (HOM damper & taper chamber) was assembled to crab cavity.

Inside crab cavity Coaxial coupler Iris of crab cavity Input coupler Tapered copper pine

Move to Test Stand for Cool-down & High Power Test

April 26, 2006 1st Oct. 16, 2006 2nd

Test Stand for Crab Cavity at D10 Station

1st High Power Test for Crab Cavity HER

- Crab cavity for HER was cooled down without leakage.
- $V_{kick} = 1.67 \text{ MV}$, exceed the design value of 1.44 MV.
- Cavity and coaxial coupler was cooled stably

during the high power test.

Cryogenic system worked very well.

Problems & Improvements (Disassemble & Re-assemble)

- Resonant frequency was lower than design value (~300kHz)
 After cool down, the cavity was pre-tuned
- Narrow tuning range Main tuner & Sub tuner

-> Change to thin stainless bellows with copper plating

• Tuner feedback stability is not good

→ Reinforce the tuning structure

• RF contact at the joint part of the coaxial coupler: for high current operation

High Power Test for Crab Cavity HER & LER

Crab Cavity HER

Crab Cavity LER

Q₀-Measurement

During high power test at test stand Q₀ were measured by calorimetric method.

Installation & Commissioning of Crab Cavities

Installation of Crab Cavities for HER Jan. 8, 2007, for LER Jan. 11, 2007

Crab Cavity for HER

Cool-down of Crab Cavities Jan. 29 , 2007 Vkick = 1.5 MV for LER Vkick = 1.6 MV for HER Beam Operation Start Feb. 13

Carrying the crab cavity using crane track

Crab Cavity for LER

SUMMARY

- After R&D efforts of 1.5 GHz and 500MHz crab cavities: We have constructed facilities for assembling of the cavities & cold RF test.
- 2 KEKB crab cavities have been constructed

and installed in KEKB.

• The crab cavities are operating more than 1 year without serious problems.

Kick voltage of crab cavity LER has decreased to $V_{kick} = 1.1 \text{ MV}$

• $L_{peak} = 15 \times 10^{33} / cm^2 / s$ attained under crab on operation.

• Potential of superconducting crab cavity could be shown!