A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Mosnier, A.

Paper Title Page
MOPD024 RF Power System for the IFMIF-EVEDA Prototype Accelerator 496
 
  • I. Kirpitchev, M-A. Falagán, A. Ibarra, P. Méndez, M. Weber
    CIEMAT, Madrid
  • M. Desmons, A. Mosnier
    CEA, Gif-sur-Yvette
 
  The IFMIF-EVEDA accelerator will be a 9 MeV, 125 mA cw deuteron accelerator prototype for verifying the validity of the accelerator design for IFMIF. The RFQ, matching section and DTL resonant cavities must be fed with continuous RF power at 175 MHz frequency with an accuracy of 1% in amplitude and ± 1° in phase. Currently two possible solutions for the DTL design are considered. The first option consists of normal conducting (NC) Alvarez type cavities and the second option consists of superconducting (SC) Half Wave Resonator cavities. Both options impose different demands on the RF system which are analyzed in this paper. The RF power system will be made of several amplification stages and will be based on vacuum tube amplifiers. The main characteristics of RF system including those of the high voltage power sources required to feed the anodes of the high power tubes will be presented in this paper.  
TUPC083 A Diagnostics Plate for the IFMIF-EVEDA Accelerator 1248
 
  • I. Podadera Aliseda, B. Brañas, J. M. Carmona, A. Ibarra, C. Oliver
    CIEMAT, Madrid
  • P.-Y. Beauvais, J. Marroncle, A. Mosnier
    CEA, Gif-sur-Yvette
 
  The IFMIF-EVEDA accelerator will be a 9 MeV, 125 mA cw deuteron accelerator which aims to validate the technology that will be used in the future IFMIF accelerator. It is essential then to implement the necessary instrumentation for the commissioning, operation and correct characterization of the beam properties of the accelerator prototype. To achieve this goal, a complete set of instrumentation will be installed in the last part of the accelerator, just before the beam dump, in the so-called Diagnostics Plate (DP). It must allow the measurement of the main parameters of the beam: current, phase, position, transverse profile, energy, transverse halo, transverse emittance and longitudinal profile. The main challenges of such a measurement are the high damage power of the low-energy cw 125 mA beam, which precludes the use of interceptive instrumentation. In addition, the DP will not only be used during operation but also during the commissioning of the different accelerating structures at 5 and 9 MeV. In this contribution, the requirements imposed to the instrumentation, the type of techniques that will be used and a first conceptual design will be presented.  
THPC028 High Energy Beam Transport Line for the IFMIF-EVEDA Accelerator 3041
 
  • C. Oliver, B. Brañas, A. Ibarra, I. Podadera Aliseda
    CIEMAT, Madrid
  • N. Chauvin, A. Mosnier, D. Uriot
    CEA, Gif-sur-Yvette
 
  The IFMIF-EVEDA accelerator will be a 9 MeV, 125 mA cw deuteron accelerator which will verify the validity of the design of the future IFMIF accelerator. A transport line is necessary to handle the high current beam from the DTL exit up to the beam dump. This line must produce the beam expansion to obtain an acceptable power density at the beam dump. Therefore the design of the transport line must consider the geometry and power handling capacity of the beam dump, the space requirements for diagnostics and the restrictions on the maximum length of the line. In addition, a bending magnet is required in order to avoid excessive irradiation of the diagnostics and line elements by neutrons and gammas produced at the beam dump and to perform energy spread measurements. In this contribution, the preliminary design of the high energy beam transport line will be presented. The results of a sensitivity study to the input beam and line elements errors will also be discussed.  
THPC088 Beam Dynamics Simulation of Superconducting HWR Option for the IFMIF Linac 3194
 
  • N. Chauvin, A. Mosnier, P. A.P. Nghiem, D. Uriot
    CEA, Gif-sur-Yvette
 
  One of the requirements of the International Fusion Materials Irradiation Facility (IFMIF) is a 250 mA, 40 MeV cw deuteron beam provided by two 125 mA linacs. In this paper, a design based on superconducting half-wave resonators (HWR) for the 5 to 40 MeV section of the IFMIF driver accelerator is presented. Multi particle beam dynamics simulations have been performed in order to validate the linac design in such a high charge space regime. A Monte Carlo error analysis has been carried out to study the effects of misalignments or field variations. The results of the simulations are presented and the final specifications of the HWR linac are summarized.  
THPP077 The IFMIF-EVEDA Accelerator Activities 3539
 
  • A. Mosnier
    CEA, Gif-sur-Yvette
  • A. Facco
    INFN/LNL, Legnaro, Padova
  • A. Ibarra
    CIEMAT, Madrid
 
  The International Fusion Materials Irradiation Facility (IFMIF) aims at producing an intense flux of 14 MeV neutrons, in order to characterize materials envisaged for future fusion reactors. This facility is based on two high power CW accelerator drivers, each delivering a 125 mA deuteron beam at 40 MeV to the common lithium target. In the framework of the EU-JA Bilateral Agreement for the Broader Approach for Fusion, the Engineering Validation and Engineering Design Activities (EVEDA) phase of IFMIF has been launched in the middle of 2007. The objectives of EVEDA are to produce the detailed design of the entire IFMIF facility, as well as to build and test a number of prototypes, including a high-intensity CW deuteron accelerator (125 mA @ 9 MeV). The major components and subsystems will be designed and developed in Europe, and will be then assembled and operated at Rokkasho in Japan. The individual components are developed in Spain, Italy and France and an european accelerator team has been settled for the coordination of the accelerator activities. The design and the layout of the accelerator are presented as well as the development schedule.