A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Mompo, R.

Paper Title Page
WEPD034 Main Field Tracking Measurement in the LHC Superconducting Dipole and Quadrupole Magnets 2485
 
  • P. Xydi, R. Alemany-Fernandez, L. Bottura, G. Deferne, M. Lamont, J. Miles, R. Mompo, M. Strzelczyk, W. Venturini Delsolaro
    CERN, Geneva
  • N. J. Sammut
    University of Malta, Faculty of Engineering, Msida
 
  One of the most stringent requirements during the energy ramp of the Large Hadron Collider (LHC) is to have a constant ratio between dipole-quadrupole and dipole-dipole field so as to control the variation of the betatron tune and of the beam orbit throughout the acceleration phase, hence avoiding particle loss. To achieve the nominal performance of the LHC, a maximum variation of ±0.003 tune units can be tolerated. For the commissioning with low intensity beams, acceptable bounds are up to 30 times higher. For the quadrupole-dipole integrated field ratio, the above requirements translate in the tight windows of 6 ppm and 180 ppm, while for dipole differences between sectors the acceptable error is of the order of 10-4. Measurement and control at this level are challenging. For this reason we have launched a dedicated measurement R&D to demonstrate that these ratios can be measured and controlled within the limits for machine operation. In this paper we present the techniques developed to power the magnets during the current ramps, the instrumentation and data acquisition setup used to perform the tracking experiments, the calibration procedure and the data reduction employed.  
WEPD028 Performance of the Superconducting Corrector Magnet Circuits during the Commissioning of the LHC 2470
 
  • W. Venturini Delsolaro, V. Baggiolini, A. Ballarino, B. Bellesia, F. Bordry, A. Cantone, M. P. Casas Lino, C. CastilloTrello, N. Catalan-Lasheras, Z. Charifoulline, C. Charrondiere, G. D'Angelo, K. Dahlerup-Petersen, G. De Rijk, R. Denz, M. Gruwe, V. Kain, M. Karppinen, B. Khomenko, G. Kirby, S. L.N. Le Naour, A. Macpherson, A. Marqueta Barbero, K. H. Mess, M. Modena, R. Mompo, V. Montabonnet, D. Nisbet, V. Parma, M. Pojer, L. Ponce, A. Raimondo, S. Redaelli, V. Remondino, H. Reymond, A. Rijllart, R. I. Saban, S. Sanfilippo, K. M. Schirm, R. Schmidt, A. P. Siemko, M. Solfaroli Camillocci, H. Thiesen, Y. Thurel, A. Vergara-Fernández, A. P. Verweij, R. Wolf, M. Zerlauth
    CERN, Geneva
  • A. Castaneda, I. Romera Ramirez
    CIEMAT, Madrid
  • SF. Feher, R. H. Flora
    Fermilab, Batavia, Illinois
 
  The LHC is a complex machine requiring more than 7400 superconducting corrector magnets distributed along a circumference of 26.7 km. These magnets are powered in 1380 different electrical circuits with currents ranging from 60 A up to 600 A. Among the corrector circuits the 600 A corrector magnets form the most diverse and differentiated magnet circuits. About 60000 high current connections had to be made. A minor fault in a circuit or one of the superconducting connections would have severe consequences for the accelerator operation. All magnets are wound from various types of Nb-Ti superconducting strands, and many contain resistors to by-pass the current in case of the transition to the normal conducting state in case of a quench, and hence reduce the hot spot temperature. In this paper the performance of these magnet circuits is presented, focussing on the quench current and quench behaviour of the magnets. Quench detection and the performance of the electrical interconnects will be dealt with. The results as measured on the entire circuits will be compared to the test results obtained during the reception tests of the individual magnets.  
WEPD029 Performance of the Main Dipole Magnet Circuits of the LHC during Commissioning 2473
 
  • A. P. Verweij, V. Baggiolini, A. Ballarino, B. Bellesia, F. Bordry, A. Cantone, M. P. Casas Lino, A. Castaneda, C. CastilloTrello, N. Catalan-Lasheras, Z. Charifoulline, G.-J. Coelingh, G. D'Angelo, K. Dahlerup-Petersen, G. De Rijk, R. Denz, M. Gruwe, V. Kain, B. Khomenko, G. Kirby, S. L.N. Le Naour, A. Macpherson, A. Marqueta Barbero, K. H. Mess, M. Modena, R. Mompo, V. Montabonnet, D. Nisbet, V. Parma, M. Pojer, L. Ponce, A. Raimondo, S. Redaelli, H. Reymond, D. Richter, A. Rijllart, I. Romera, R. I. Saban, S. Sanfilippo, R. Schmidt, A. P. Siemko, M. Solfaroli Camillocci, H. Thiesen, Y. Thurel, W. Venturini Delsolaro, A. Vergara-Fernández, R. Wolf, M. Zerlauth
    CERN, Geneva
  • SF. Feher, R. H. Flora
    Fermilab, Batavia, Illinois
 
  During hardware commissioning of the Large Hadron Collider, 8 main dipole circuits and 16 main quadrupole circuits are tested at 1.9 K and up to their nominal current. Each dipole circuit contains 154 magnets of 15 m length, and has a total stored energy of up to 1.1 GJ. Each quadrupole circuit contains 47 or 51 magnets of 5.4 m length, and has a total stored energy of up to 20 MJ. All magnets are wound from Nb-Ti superconducting Rutherford cables, and contain heaters to quickly force the transition to the normal conducting state in case of a quench, and hence reduce the hot spot temperature. In this paper the performance of these circuits is presented, focusing on the quench current and quench behaviour of the magnets. Quench detection, heater performance, operation of the cold bypass diodes, cryogenic recovery time, electrical joints, and possible magnet-to-magnet quench propagation will be dealt with. The results as measured on the entire circuits will be compared to the test results obtained during the reception tests of the individual magnets.