A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Li, H. H.

Paper Title Page
WEPC040 Commissioning of the SSRF Booster 2073
 
  • H. H. Li, Q. Gu, D. M. Li, L. G. Liu, D. Wang, Z. T. Zhao
    SINAP, Shanghai
 
  The SSRF Booster, designed to accelerate the electrons from 150MeV to 3.5GeV, is a FODO structure synchrotron with 180m circumference and 2Hz repetition rate. The commissioning of the SSRF booster from the LTB transfer line started on Sept. 30th evening, 2007, the first turns of beam in the booster was obtained in 20 hours. With about 60 hours effective commissioning effort, the electrons were accelerated to 3.5GeV on October 5th morning, 2007. And then the first 3.5GeV beam was extracted to BTS transfer line on October 30th, 2007. In this paper, the SSRF booster is introduced and its commissioning results are presented.  
WEPC041 The Injection System of the SSRF Storage Ring 2076
 
  • H. H. Li, B. C. Jiang, L. G. Liu, X. Y. Sun, Y. Xu, W. Zhang, X. M. Zhou
    SINAP, Shanghai
 
  A multi-turn injection scheme with four kickers and two septa is used for injection into SSRF storage ring. The 3.5GeV electron beam from the SSRF booster is injected with 6.3 degrees horizontally. All injection elements are set in one 12m long straight section for the requirement of the top-up operation. Simulation and commissioning results will be presented in this paper, such as the injection efficiency and the disturbance on stored beam.  
WEPC042 Commissioning of the SSRF Storage Ring 2079
 
  • L. G. Liu
    SSRF, Shanghai
  • Z. M. Dai, B. C. Jiang, H. H. Li, D. Wang, W. Zhang, Z. T. Zhao
    SINAP, Shanghai
 
  The Shanghai Synchrotron Radiation Facility (SSRF) is a 3.5GeV synchrotron radiation light source under commissioning in Shanghai, China. The SSRF accelerator complex consists of a 150MeV linac, full energy booster and a 3.5GeV storage ring. The commissioning of the SSRF storage ring began on Dec. 21st evening, 2007, the first turn and 150 turns was observed in less than 12 hours with RF off and then the stored beam of 5 mA was achieved on Dec. 24th. On Jan. 3rd, 2008, the 100mA stored beam current were obtained in the machine for the first time. Since then, the storage ring has been brought close to the design parameters, and frequent operation with 100mA beam current has been down for making the vacuum chamber cleaning. In this paper, commissioning results of the machine is presented.  
WEPC083 Status of the SSRF Booster 2189
 
  • D. M. Li, H. W. Du, H. H. Li, Z. T. Zhao
    SINAP, Shanghai
 
  The SSRF booster is a 2Hz electron synchrotron. It accelerates electrons, coming from a 150 MeV linac, to a final energy of 3.5 GeV in 250ms and extracts them into the storage ring. The booster lattice is based on a FODO structure with missing dipoles, forming 28 cells with 8 straight sections of a 2-folder symmetry and 180m circumference. The SSRF injector (Include 150 MeV linac, booster and two transport lines) was designed for Top-Up injection, which has single-bunch and multi-bunch beam modes. After 9 months installation and pre-commissioning, the SSRF booster commissioning started on September 30, 2007. The first 3.5GeV beam was obtained On Oct.5, and the first extracted beam was obtained on Oct.29, 2007. The booster serves as a injector for storage ring from Dec. 21, 2007. In this paper, the design, installation and commissioning of the SSRF booster and transport lines are described.