A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kramer, T.

Paper Title Page
WEPP060 Abort Gap Cleaning Using the Transverse Feedback System: Simulation and Measurements in the SPS for the LHC Beam Dump System 2656
 
  • A. Koschik, B. Goddard, W. Höfle, G. Kotzian, D. K. Kramer, T. Kramer
    CERN, Geneva
 
  The critical and delicate process of dumping the beams of the LHC requires very low particle densities within the 3 microseconds of the dump kicker rising edge. High beam population in this so-called 'abort gap' might cause magnet quenches or even damage. Constant refilling due to diffusion processes is expected which will be counter-acted by an active abort gap cleaning system employing the transverse feedback kickers. In order to assess the feasibility and performance of such an abort gap cleaning system, simulations and measurements with beam in the SPS have been performed. Here we report on the results of these studies.  
WEPP064 Apertures in the LHC Beam Dump System and Beam Losses during Beam Abort 2665
 
  • T. Kramer, B. Goddard, M. Gyr, A. Koschik, J. A. Uythoven, Th. Weiler
    CERN, Geneva
 
  The LHC beam dump system is used to dispose accelerated protons and ions in a wide energy range from 450 GeV up to 7 TeV. An abort gap of 3 microseconds is foreseen to avoid sweeping particles through the ring aperture. This paper gives a brief overview of the critical apertures in the extraction region and the two beam dump lines, and presents MAD-X tracking studies made to investigate the impact of particles swept through the aperture due to extraction kicker failures or spurious particles within the abort gap.  
WEPP065 Beam Commissioning of the SPS-to-LHC Transfer Line TI 2 2668
 
  • J. A. Uythoven, G. Arduini, R. W. Assmann, N. Gilbert, B. Goddard, V. Kain, A. Koschik, T. Kramer, M. Lamont, V. Mertens, S. Redaelli, J. Wenninger
    CERN, Geneva
 
  The transfer line for the LHC Ring 1 was successfully commissioned with beam in the autumn of 2007. After extraction from the SPS accelerator and about 2.7 km of new transfer line, the beam arrived at the temporarily installed beam dump, about 50 m before the start of the LHC tunnel, without the need of any beam threading. This paper gives an overview of the hardware commissioning period and the actual beam tests carried out. It summarises the results of the beam test optics measurements and the performance of the installed hardware.  
THPP087 4 GeV H- Charge Exchange Injection into the PS2 3566
 
  • B. Goddard, W. Bartmann, M. Benedikt, A. Koschik, T. Kramer
    CERN, Geneva
 
  The proposed PS2 will accelerate protons from 4 to 50 GeV. The required beam intensity and brightness can only be achieved with a multi-turn H- charge exchange injection system, where the small emittance injected beam is used to paint the transverse phase space of the PS2 machine. This paper describes the constraints and conceptual design of the H- injection system and its incorporation into the present PS2 lattice. The requirements for the special injection system elements are described, in particular the injection chicane and painting magnet systems and the charge exchange foil. Some key performance aspects are investigated, including the stripping efficiency, expected emittance growth and beam loss arising from the simulated number of multiple foil traversals, together with estimates of foil heating.  
THPP088 Design Considerations for the PS2 Beam Dumps 3569
 
  • T. Kramer, M. Benedikt, B. Goddard, H. Vincke
    CERN, Geneva
 
  Studies have been made to evaluate and differentiate necessary beam disposal functions for the proposed PS2 accelerator. The paper describes briefly the different beam dump functionalities required for the PS2 machine and its transfer lines, and makes some first estimates about the expected beam loads. This data has been taken as input for comparing the different technical options for the dump systems, in particular to simulate the radiological impact of different internal or external beam dump concepts. The numbers derived have been used to help in evaluating the feasibility of the technical alternatives.