A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kostka, B. K.

Paper Title Page
WEPC121 Magnetic Measurement Device for Superconductive Undulator Mock-up Coils at ANKA 2291
 
  • E. M. Mashkina, B. K. Kostka, E. Steffens
    University of Erlangen-Nürnberg, Physikalisches Institut II, Erlangen
  • T. Baumbach, A. Bernhard, D. Wollmann
    University of Karlsruhe, Karlsruhe
  • S. Casalbuoni, A. W. Grau, M. Hagelstein, R. Rossmanith
    FZK, Karlsruhe
 
  A device for precise magnetic measurements of superconductive coils was designed, built and installed at the synchrotron radiation source ANKA, Forschungszentrum Karlsruhe. Accurate magnetic field measurements are a prerequisite for the characterization and optimization of insertion devices. The new device allows measuring the magnetic field magnitude of test coils with a longitudinal precision of 10 μm using a 2D Hall probe bench. The cylindrical liquid He cryostat allows mounting coils of maximum dimensions 50 cm in length and 30 cm in diameter. The set-up is computer controlled. The contribution will present the new device as well as the results obtained.  
WEPC125 Development of Three New Superconducting Insertion Devices for the ANKA Storage Ring 2300
 
  • R. Rossmanith, S. Casalbuoni, A. W. Grau, M. Hagelstein
    FZK, Karlsruhe
  • T. Baumbach, A. Bernhard, P. Peiffer, D. Wollmann
    University of Karlsruhe, Karlsruhe
  • C. Boffo, M. Borlein, W. Walter
    BNG, Würzburg
  • B. K. Kostka, E. M. Mashkina, E. Steffens
    University of Erlangen-Nürnberg, Physikalisches Institut II, Erlangen
 
  After a first successful test of a superconductive cold bore undulator in ANKA a new generation of superconductive insertion devices is under construction or in a detailed planning phase. The first one, referred to as as SCU14 and now under construction, is an improved version of the existing undulator (14 mm period length, 100 periods long) with a new cooling scheme for small gap operation and a reduced field error. The period length of the second device called SCUW can be switched electrically between 15 and 45 mm. The third one is a superconductive undulator which can tolerate a beam heat load of several Watts in combination with a small field error named SCU2. It is designed for third generation light sources with a heat load of up to 6 Watt from the beam to the cold bore.