A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Johnstone, J. A.

Paper Title Page
WEPD037 Nb3Sn Quadrupoles in the LHC IR Phase I Upgrade 2491
 
  • A. V. Zlobin, J. A. Johnstone, V. Kashikhin, N. V. Mokhov, I. L. Rakhno
    Fermilab, Batavia, Illinois
  • S. Peggs, G. Robert-Demolaize, P. Wanderer, R. de Maria
    BNL, Upton, Long Island, New York
 
  After some years of operation at nominal parameters, the LHC will be upgraded for higher luminosity. At the present time it is planned to perform the IR upgrade in two phases with the target luminosity for Phase I of ~2.5· 1034 cm-2s-1 and up to 1035 cm-2s-1 for Phase II. In Phase I the baseline 70-mm NbTi low-beta quadrupoles will nominally be replaced with larger aperture NbTi magnets and in Phase II with higher performance Nb3Sn magnets. U. S.-LARP is working on the development of large aperture high-performance Nb3Sn magnet technologies for the LHC Phase II luminosity upgrade. Recent progress also suggests the possibility of using Nb3Sn quadrupoles in the Phase I upgrade, improving the luminosity through an early demonstration of Nb3Sn magnet technology in a real accelerator environment. This paper discusses the possible hybrid optics layouts for Phase I upgrades with both NbTi and Nb3Sn quadrupoles, introducing magnet parameters and issues related to using Nb3Sn quadrupoles including magnet length and aperture limitations, field quality, operation margin, etc. Possible transition scenarios to Phase II are also discussed.  
WEPP047 Optics Implications of Implementing Nb3Sn Magnets in the LHC Phase I Upgrade 2626
 
  • J. A. Johnstone, V. Kashikhin, N. V. Mokhov, A. V. Zlobin
    Fermilab, Batavia, Illinois
 
  CERN has encouraged the US-LARP collaboration to participate in Phase I of the LHC luminosity upgrade by analyzing the benefits gained by using Nb3Sn technology to replace the functionality of select magnets CERN is commited to construct using NbTi magnets. Early studies have shown that the much higher gradients (shorter magnetic lengths) and energy load of Nb3Sn magnets compared to their NbTi counterpars is very favorable – allowing the insertion of additional absorbers between Q1 & Q2, for example. This paper discusses the relative merits of the NbTi and Nb3Sn options.