A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Honda, T.

Paper Title Page
MOPC061 Progress in R&D Efforts on the Energy Recovery Linac in Japan 205
 
  • S. Sakanaka, T. A. Agoh, A. Enomoto, S. Fukuda, K. Furukawa, T. Furuya, K. Haga, K. Harada, S. Hiramatsu, T. Honda, Y. Honda, K. Hosoyama, M. Izawa, E. Kako, T. Kasuga, H. Kawata, M. Kikuchi, H. Kobayakawa, Y. Kobayashi, T. Matsumoto, S. Michizono, T. Mitsuhashi, T. Miura, T. Miyajima, T. Muto, S. Nagahashi, T. Naito, T. Nogami, S. Noguchi, T. Obina, S. Ohsawa, T. Ozaki, H. Sasaki, S. Sasaki, K. Satoh, M. Satoh, M. Shimada, T. Shioya, T. Shishido, T. Suwada, T. Takahashi, Y. Tanimoto, M. Tawada, M. Tobiyama, K. Tsuchiya, T. Uchiyama, K. Umemori, S. Yamamoto
    KEK, Ibaraki
  • R. Hajima, H. Iijima, N. Kikuzawa, E. J. Minehara, R. Nagai, N. Nishimori, M. Sawamura
    JAEA/ERL, Ibaraki
  • H. Hanaki
    JASRI/SPring-8, Hyogo-ken
  • A. Ishii, I. Ito, T. Kawasaki, H. Kudo, N. Nakamura, H. Sakai, S. Shibuya, K. Shinoe, T. Shiraga, H. Takaki
    ISSP/SRL, Chiba
  • M. Katoh
    UVSOR, Okazaki
  • Y. Kobayashi, K. Torizuka, D. Yoshitomi
    AIST, Tsukuba
  • M. Kuriki
    HU/AdSM, Higashi-Hiroshima
 
  The future synchrotron light sources, based on the energy recovery linacs (ERL), are expected to be capable of producing super-brilliant and/or ultra-short pulses of synchrotron radiation. The ERL-based light sources are under development at such institutes as the Cornell University, the Daresbury Laboratory, the Advanced Photon Source, and KEK/JAEA. The Japanese collaboration team, including KEK, JAEA, ISSP, and UVSOR, is working to realize the key technologies for the ERLs. Our R&D program includes the developments of ultra-low-emittance photocathode DC guns and of superconducting cavities, as well as proofs of accelerator-physics issues at a small test ERL (the Compact ERL). A 250-kV, 50-mA photo-cathode DC gun is under construction at JAEA. Two single-cell niobium cavities have been tested under high electric fields at KEK. The conceptual design of the Compact ERL has been carried out. We report recent progress in our R&D efforts.  
WEPC035 Present Status of PF-ring and PF-AR in KEK 2064
 
  • Y. Kobayashi, S. Asaoka, K. Ebihara, K. Haga, K. Harada, T. Honda, T. Ieiri, M. Izawa, T. Kageyama, T. Kasuga, M. Kikuchi, K. Kudo, H. Maezawa, K. Marutsuka, A. Mishina, T. Mitsuhashi, T. Miyajima, H. Miyauchi, S. Nagahashi, T. T. Nakamura, T. Nogami, T. Obina, K. Oide, M. Ono, T. Ozaki, C. O. Pak, H. Sakai, Y. Sakamoto, S. Sakanaka, H. Sasaki, Y. Sato, M. Shimada, T. Shioya, M. Tadano, T. Tahara, T. Takahashi, S. Takasaki, Y. Tanimoto, M. Tejima, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, S. Yamamoto, Ma. Yoshida, M. Yoshimoto
    KEK, Ibaraki
 
  In KEK, we have two synchrotron light sources which were constructed in the early 1980s. One is the Photon Factory storage ring (PF-ring) and the other is the Photon Factory advanced ring (PF-AR). The PF-ring is usually operated at 2.5 GeV and sometimes ramped up to 3.0 GeV to provide photons with the energy from VUV to hard X-ray region. The PF-AR is mostly operated in a single-bunch mode of 6.5GeV to provide pulsed hard X-rays. Operational performances of them have been upgraded through several reinforcements. After the reconstruction of the straight section of the PF-ring in 2005, two short-period-gap undulators have been stably operated. They allow us to produce higher brilliant hard X-rays even at the energy of 2.5 GeV. In March 2008, the circular polarized undulator will be installed in the long straight section of 8.9 m. In the PF-AR, new tandem undulators have been operated since September 2006 to generate much stronger pulsed hard X-rays for the sub-ns resolved X-ray diffraction experiments. In this conference, we report present status of the PF-ring and the PF-AR.  
WEPC091 Beam Injection by Use of a Pulsed Sextupole Magnet at the Photon Factory Storage Ring 2204
 
  • H. Takaki, N. Nakamura
    ISSP/SRL, Chiba
  • K. Harada, T. Honda, Y. Kobayashi, T. Miyajima, S. Nagahashi, T. Obina, A. Ueda
    KEK, Ibaraki
 
  We will install a pulsed sextupole magnet (PSM) in order to test a new injection system for the top-up injection at the Photon Factory storage ring (PF ring) in the spring of 2008. A parabolic magnetic field of the PSM can give an effective kick to the injected beam that passes a distant region from the field center. And there is little modulation of the orbit of the stored beam because it passes around the center of the PSM. To achieve the beam injection at the PF ring, the PSM has a length of 0.3m, a magnetic field of 400 Gauss at a peak current of 3000A and a pulse width of 2.4μsec in a half-sine form. We already made the PSM and measured the magnetic field. We will report the result of the PSM beam injection at the PF ring.