A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Haga, K.

Paper Title Page
MOPC061 Progress in R&D Efforts on the Energy Recovery Linac in Japan 205
 
  • S. Sakanaka, T. A. Agoh, A. Enomoto, S. Fukuda, K. Furukawa, T. Furuya, K. Haga, K. Harada, S. Hiramatsu, T. Honda, Y. Honda, K. Hosoyama, M. Izawa, E. Kako, T. Kasuga, H. Kawata, M. Kikuchi, H. Kobayakawa, Y. Kobayashi, T. Matsumoto, S. Michizono, T. Mitsuhashi, T. Miura, T. Miyajima, T. Muto, S. Nagahashi, T. Naito, T. Nogami, S. Noguchi, T. Obina, S. Ohsawa, T. Ozaki, H. Sasaki, S. Sasaki, K. Satoh, M. Satoh, M. Shimada, T. Shioya, T. Shishido, T. Suwada, T. Takahashi, Y. Tanimoto, M. Tawada, M. Tobiyama, K. Tsuchiya, T. Uchiyama, K. Umemori, S. Yamamoto
    KEK, Ibaraki
  • R. Hajima, H. Iijima, N. Kikuzawa, E. J. Minehara, R. Nagai, N. Nishimori, M. Sawamura
    JAEA/ERL, Ibaraki
  • H. Hanaki
    JASRI/SPring-8, Hyogo-ken
  • A. Ishii, I. Ito, T. Kawasaki, H. Kudo, N. Nakamura, H. Sakai, S. Shibuya, K. Shinoe, T. Shiraga, H. Takaki
    ISSP/SRL, Chiba
  • M. Katoh
    UVSOR, Okazaki
  • Y. Kobayashi, K. Torizuka, D. Yoshitomi
    AIST, Tsukuba
  • M. Kuriki
    HU/AdSM, Higashi-Hiroshima
 
  The future synchrotron light sources, based on the energy recovery linacs (ERL), are expected to be capable of producing super-brilliant and/or ultra-short pulses of synchrotron radiation. The ERL-based light sources are under development at such institutes as the Cornell University, the Daresbury Laboratory, the Advanced Photon Source, and KEK/JAEA. The Japanese collaboration team, including KEK, JAEA, ISSP, and UVSOR, is working to realize the key technologies for the ERLs. Our R&D program includes the developments of ultra-low-emittance photocathode DC guns and of superconducting cavities, as well as proofs of accelerator-physics issues at a small test ERL (the Compact ERL). A 250-kV, 50-mA photo-cathode DC gun is under construction at JAEA. Two single-cell niobium cavities have been tested under high electric fields at KEK. The conceptual design of the Compact ERL has been carried out. We report recent progress in our R&D efforts.  
MOPC120 J-PARC RCS Non-linear Frequency Sweep Analysis 346
 
  • A. Schnase, K. Haga, K. Hasegawa, M. Nomura, F. Tamura, M. Yamamoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • S. Anami, E. Ezura, K. Hara, C. Ohmori, A. Takagi, M. Toda, M. Yoshii
    KEK, Ibaraki
 
  A standard method to measure the S21-transfer function of a system of amplifier and cavity involves a network analyzer and a linear or logarithmic frequency sweep. However, to characterize the transfer function of the broadband (Q=2) RCS RF system, we measure and analyze several harmonics at the same time under high power ramping conditions. A pattern driven DDS system generates frequency and amplitude as in accelerator operation. During the 20ms acceleration part of the cycle, a large memory oscilloscope captures the RF-signals. The data are analyzed off-line with a down-conversion process like in a multi-harmonic LLRF-system, resulting in multi-harmonic amplitude and phase information. Using this setup in the cavity test phase we were able to find and cure resonances before installation into the tunnel. We show examples. RCS is in the commissioning phase and has reached the milestone of acceleration to final energy and beam extraction. 10 RF systems are in operation, and the low-level RF system controls the fundamental h(2) and the second harmonic h(4). Using a multi-harmonic analysis during beam operation allows checking the RF system behavior with and without beam-loading.  
MOPC126 Beam Acceleration with Full-digital LLRF Control System in the J-PARC RCS 364
 
  • F. Tamura, K. Haga, K. Hasegawa, M. Nomura, A. Schnase, M. Yamamoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • S. Anami, E. Ezura, K. Hara, C. Ohmori, A. Takagi, M. Toda, M. Yoshii
    KEK, Ibaraki
 
  In the J-PARC RCS (Rapid Cycling Synchrotron) we employ a full-digital LLRF control system to accelerate an ultra-high intensity proton beam. The key feature is the multi-harmonic RF signal generation by using direct digital synthesis (DDS) technology. By employing a full-digital system, highly accurate, stable and reproductive RF voltages are generated in the wide-band RF cavities loaded by magnetic alloy (MA) cores. The beam commissioning of the J-PARC RCS has been started in October 2007. The accelerators, the linac and the RCS, show good stability. The beam orbit and the longitudinal beam shape and phase are reproductive from cycle to cycle especially thanks to the stability of the linac energy, the RCS bending field and the frequency and voltage of the RCS RF. This reproductivity makes the beam commissioning efficient. We present the examples of the orbit signals and the longitudinal current signals. Also, we discuss the longitudinal beam control performance and future plans.  
MOPC134 The Status of the J-PARC RF Systems 385
 
  • M. Yoshii, S. Anami, E. Ezura, K. Hara, C. Ohmori, A. Takagi, M. Toda
    KEK, Ibaraki
  • K. Haga, K. Hasegawa, M. Nomura, A. Schnase, F. Tamura, M. Yamamoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
 
  The first acceleration of a proton beam at the J-PARC Rapid Cycling Synchrotron started in October 2007. The R&D for magnetic alloy (MA) loaded rf-systems to realize a high field gradient accelerating system for a rapid cycling machine has been initiated in 1996 with the aim of surpassing standard ferrite loaded cavities. The RCS RF system is broad-band and designed to cover both the RCS accelerating frequency range and the second harmonic for bunch shape manipulation. The optimum Q value of the RCS cavities is approximately 2. This is realized by combining a high-Q parallel inductor with an un-cut core configuration. The beam commissioning of the 50GeV Main Ring synchrotron will start in May 2008. Acceleration and slow-beam extraction are planned for December 2008. In case of the MR RF system, the accelerating frequency swing is small. The Q-value in the order of 20 has been selected to reduce transient beam loading due to the multiple-batch injection scheme. The MR RF cavities realize the Q-value by a cut-core configuration. The details of the RF systems and the results of beam accelerations are summarized.  
WEPC035 Present Status of PF-ring and PF-AR in KEK 2064
 
  • Y. Kobayashi, S. Asaoka, K. Ebihara, K. Haga, K. Harada, T. Honda, T. Ieiri, M. Izawa, T. Kageyama, T. Kasuga, M. Kikuchi, K. Kudo, H. Maezawa, K. Marutsuka, A. Mishina, T. Mitsuhashi, T. Miyajima, H. Miyauchi, S. Nagahashi, T. T. Nakamura, T. Nogami, T. Obina, K. Oide, M. Ono, T. Ozaki, C. O. Pak, H. Sakai, Y. Sakamoto, S. Sakanaka, H. Sasaki, Y. Sato, M. Shimada, T. Shioya, M. Tadano, T. Tahara, T. Takahashi, S. Takasaki, Y. Tanimoto, M. Tejima, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, S. Yamamoto, Ma. Yoshida, M. Yoshimoto
    KEK, Ibaraki
 
  In KEK, we have two synchrotron light sources which were constructed in the early 1980s. One is the Photon Factory storage ring (PF-ring) and the other is the Photon Factory advanced ring (PF-AR). The PF-ring is usually operated at 2.5 GeV and sometimes ramped up to 3.0 GeV to provide photons with the energy from VUV to hard X-ray region. The PF-AR is mostly operated in a single-bunch mode of 6.5GeV to provide pulsed hard X-rays. Operational performances of them have been upgraded through several reinforcements. After the reconstruction of the straight section of the PF-ring in 2005, two short-period-gap undulators have been stably operated. They allow us to produce higher brilliant hard X-rays even at the energy of 2.5 GeV. In March 2008, the circular polarized undulator will be installed in the long straight section of 8.9 m. In the PF-AR, new tandem undulators have been operated since September 2006 to generate much stronger pulsed hard X-rays for the sub-ns resolved X-ray diffraction experiments. In this conference, we report present status of the PF-ring and the PF-AR.