A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Drozhdin, A. I.

Paper Title Page
MOPC098 LHC Particle Collimation by Hollow Electron Beams 292
 
  • V. D. Shiltsev, A. I. Drozhdin, V. Kamerdzhiev, G. F. Kuznetsov, L. G. Vorobiev
    Fermilab, Batavia, Illinois
 
  Electron Lenses built and installed in Tevatron have proven themselves as safe and very reliable instruments which can be effectively used in hadron collider operation for a number of applications, including compensation of beam- beam effects, DC beam removal from abort gaps, as a diagnostic tool. In this presentation we consider a possibility of using electron lenses with hollow electron beam for ion and proton collimation in LHC.  
WEPD036 Radiation and Thermal Analysis of Superconducting Quadrupoles in the Interaction Region of Linear Collider 2488
 
  • A. V. Zlobin, A. I. Drozhdin, V. Kashikhin, V. S. Kashikhin, M. L. Lopes, N. V. Mokhov
    Fermilab, Batavia, Illinois
  • A. Seryi
    SLAC, Menlo Park, California
 
  The upcoming and disrupted electron and positron beams in the baseline design of ILC interaction region are focused by compact FD doublets each consisting of two small-aperture superconducting quadrupoles and multipole correctors. These magnets will work in a severe radiation environment generated primarily by incoherent pairs and radiative Bhabhas. This paper analyzes the radial, azimuthal and longitudinal distributions of radiation heat deposition in incoming and disrupted beam doublets. Operation margins of baseline quadrupoles based on NbTi superconductor and direct wind technology as well as alternative designs based on NbTi or Nb3Sn Rutherford cables are calculated and compared. The possibilities of reducing the heat deposition in magnet coils using internal absorbers are discussed.  
WEPP164 Beam Collimation Studies for the ILC Positron Source 2871
 
  • A. I. Drozhdin
    Fermilab, Batavia, Illinois
  • Y. Nosochkov, F. Zhou
    SLAC, Menlo Park, California
 
  The results of collimation studies for the ILC positron source beam line are presented. The calculations of primary positron beam loss are done using the ELEGANT code. The secondary positron and electron beam loss, synchrotron radiation along the beam line and bremsstrahlung radiation in the collimators are simulated using the STRUCT code. The first part of the system, located right after the positron source target at 0.125 GeV, is used for protection of super-conducting RF Linac from heating and radiation. The second part of the system is used for final collimation of the beam before injection to the Damping Ring at 5 GeV. The calculated power loss in the collimation region is about 100 W/m, with loss in the collimators of 0.2-5 kW. The beam transfer efficiency from target to the Damping Ring is 13.5%.