A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Bogacz, S. A.

Paper Title Page
WEPP028 Flexible Momentum Compaction Return Arcs for RLAs 2578
 
  • D. Trbojevic
    BNL, Upton, Long Island, New York
  • S. A. Bogacz
    Jefferson Lab, Newport News, Virginia
  • R. P. Johnson
    Muons, Inc, Batavia
  • M. Popovic
    Fermilab, Batavia, Illinois
 
  Neutrino Factories and Muon Colliders require rapid acceleration of short-lived muons to multi-GeV and TeV energies. A Recirculating Linear Accelerator (RLA) that uses a single Linac and teardrop return arcs can provide exceptionally fast and economical acceleration to the extent that the focusing range of the RLA quadrupoles allows each muon to pass several times through each high-gradient cavity and the cost of the return arcs is appropriate. Flexible Momentum Compaction (FMC) lattice designs for the teardrop return arcs provide sufficient momentum acceptance to allow multiple passes of each sign of muon in one string of magnets to improve cost-effectiveness.  
WEPP048 Recirculating Linear Muon Accelerator with Ramped Quadrupoles 2629
 
  • S. A. Bogacz
    Jefferson Lab, Newport News, Virginia
  • R. P. Johnson
    Muons, Inc, Batavia
 
  Neutrino Factories and Muon Colliders require rapid acceleration of short-lived muons to multi-GeV and TeV energies. A Recirculating Linear Accelerator (RLA) that uses a single Linac and teardrop return arcs can provide exceptionally fast and economical acceleration to the extent that the focusing range of the RLA quadrupoles allows each muon to pass several times through each high-gradient cavity. A new concept of rapidly changing the strength of the RLA focusing quadrupoles as the muons gain energy is being developed to increase the number of passes that each muon will make in the RF cavities, leading to greater cost effectiveness. We are developing the optics and technical requirements for RLA designs, using RF cavities capable of simultaneous acceleration of both μ+ and μ- species, with pulsed Linac quadrupoles to allow the maximum number of passes.

Supported in part by DOE STTR grant DE-FG02-05ER86253

 
WEPP049 Advances on ELIC Design Studies 2632
 
  • S. A. Bogacz, P. Chevtsov, Y. S. Derbenev, P. Evtushenko, M. Hutton, G. A. Krafft, R. Li, L. Merminga, J. Musson, B. C. Yunn, Y. Zhang
    Jefferson Lab, Newport News, Virginia
  • J. Qiang
    LBNL, Berkeley, California
  • H. K. Sayed
    Old Dominion University, Norfolk, Virginia
 
  An electron-ion collider of a center-of-mass energy up to 90 GeV at luminosity up to 1035 cm-2s-1 with both beams highly polarized is essential for exploring the new QCD frontier of strong color fields in nuclear and precisely imaging the sea-quarks and gluons in the nucleon. A conceptual design of a ring-ring collider based on CEBAF (ELIC) with energies up to 9 GeV for electrons/positrons and up to 225 GeV for protons and 100 GeV/u for ions has been proposed to fulfill the science desire and to serve as the next step for CEBAF after the planned 12 GeV energy upgrade of the fixed target program. Here, we summarize recent design progress for the ELIC complex with four interaction points (IP); including interaction region optics with chromatic aberration compensation scheme and complete lattices for the Figure-8 collider rings. Further optimization of crab crossing angles at the IPs, simulations of beam-beam interactions and electron polarization in the Figure-8 ring and its matching at the IPs are also discussed.