A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Ben-Zvi, I.

Paper Title Page
MOPC057 R&D Energy Recovery Linac at Brookhaven National Laboratory 193
 
  • V. Litvinenko, D. Beavis, I. Ben-Zvi, M. Blaskiewicz, A. Burrill, R. Calaga, P. Cameron, X. Chang, K. A. Drees, G. Ganetis, D. M. Gassner, H. Hahn, L. R. Hammons, A. Hershcovitch, H.-C. Hseuh, A. K. Jain, A. Kayran, J. Kewisch, R. F. Lambiase, D. L. Lederle, G. J. Mahler, G. T. McIntyre, W. Meng, T. C. Nehring, B. Oerter, C. Pai, D. Pate, D. Phillips, E. Pozdeyev, T. Rao, J. Reich, T. Roser, T. Russo, K. Smith, J. E. Tuozzolo, D. Weiss, N. Williams, K. Yip, A. Zaltsman
    BNL, Upton, Long Island, New York
  • H. Bluem, M. D. Cole, A. J. Favale, D. Holmes, J. Rathke, T. Schultheiss
    AES, Medford, NY
  • J. R. Delayen, L. W. Funk, H. L. Phillips, J. P. Preble
    Jefferson Lab, Newport News, Virginia
 
  Collider Accelerator Department at BNL is in the final stages of developing the 20-MeV R&D energy recovery linac with super-conducting 2.5 MeV RF gun and single-mode super-conducting 5-cell RF linac. This unique facility aims to address many outstanding questions relevant for high current (up to 0.5 A of average current), high brightness energy-recovery linacs with novel Zigzag-type merger. We present the performance of the R&D ERL elements and detailed commissioning plan.  
THPC069 Impact of Magnet Misalignment in an ERL for Electron Cooling in RHIC 3146
 
  • V. H. Ranjbar, D. T. Abell, K. Paul
    Tech-X, Boulder, Colorado
  • I. Ben-Zvi, J. Kewisch
    BNL, Upton, Long Island, New York
  • R. D. Ryne
    LBNL, Berkeley, California
 
  The MaryLie/IMPACT code was recently upgraded to include magnet errors. We have used the code to assess the sensitivity of final emittance of an ERL injector for the proposed RHIC electron cooler to up-stream magnetic element misalignments. This calculation will help determine the error tolerance for the construction of the ERL.  
THPC085 VORPAL Simulations Relevant to Coherent Electron Cooling 3185
 
  • G. I. Bell, D. L. Bruhwiler, A. V. Sobol
    Tech-X, Boulder, Colorado
  • I. Ben-Zvi, V. Litvinenko
    BNL, Upton, Long Island, New York
  • Y. S. Derbenev
    Jefferson Lab, Newport News, Virginia
 
  Coherent electron cooling (CEC)* combines the best features of electron cooling and stochastic cooling, via free-electron laser technology**, to offer the possibility of cooling high-energy hadron beams with order-of-magnitude shorter cooling times. Many technical difficulties must be resolved via full-scale 3D simulations, before the CEC concept can be validated experimentally. VORPAL is the ideal code for simulating the “modulator” and “kicker” regions, where the electron and hadron beams will co-propagate as in a conventional electron cooling section. Unlike previous VORPAL simulations*** of electron cooling physics, where dynamical friction on the ions was the key metric, it is the details of the electron density wake driven by each ion in the modulator section that must be understood, followed by strong amplification in the FEL. We present some initial simulation results. In particular, we compare the semi-analytic binary collision model with electrostatic particle-in-cell (PIC).

*Ya. S. Derbenev, COOL ’07 Proc. (2007).
**V. N. Litvinenko and Ya. S. Derbenev, FEL ’07 Proc. (2007).
***A. V. Fedotov et al. Phys. Rev. ST/AB 9, 074401 (2006).