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Abstract

Coherent electron cooling (CEC) [1] combines the best
features of electron cooling and stochastic cooling, via
free-electron laser technology [2], to offer the possibil-
ity of cooling high-energy hadron beams with order-of-
magnitude shorter cooling times. Many technical difficul-
ties must be resolved via full-scale 3D simulations, before
the CEC concept can be validated experimentally. VOR-
PAL is the ideal code for simulating the modulator and
kicker regions, where the electron and hadron beams will
co-propagate as in a conventional electron cooling section.
Unlike previous VORPAL simulations [3] of electron cool-
ing physics, where dynamical friction on the ions was the
key metric, it is the details of the electron density wake
driven by each ion in the modulator section that must be
understood, followed by strong amplification in the FEL.
We present some initial simulation results.

COHERENT ELECTRON COOLING

The idea of Coherent electron cooling (CEC) was pro-
posed by Derbenev in 1980 [4]. A novel FEL-based ver-
sion of the idea was recently developed by Litvinenko and
Derbenev [2].

CEC is initiated by a process nearly identical to con-
ventional electron cooling. The beam of hadrons is co-
propagated with a beam of electrons. Although these
beams are highly relativistic in the laboratory frame, aIl
velocities are non-relativistic in the “beam frame” drifting
with the two beams.

The proposed CEC consists of three stages:

1. Modulator: Hardons induce a density perturbation or
wake in the co-propagating electron distribution. In
this paper we model this stage only.

2. FEL: The density perturbation is amplified by a high-
gain Free Electron Laser (FEL). At the same time,
hadrons experience longitudinal dispersion.

3. Kicker: The electric field induced by the amplified
density perturbation reduces the longitudinal emit-
tance of the hadron beam by accelerating less en-
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ergetic hadrons and decelerating more energetic
hadrons.

VORPAL [5, 6] is an ideal tool for investigating the mod-
ulator and kicker stages. These stages are similar to con-
ventional electron cooling, and we can model the parti-
cle interaction using electrostatic PIC. In VORPAL there
are also several specialized algorithms to accurately model
small impact parameter collisions [7]. The FEL stage can
be modeled using an FEL code, such as GENESIS [8].

SIMULATING THE MODULATOR

We simulate the modulator in VORPAL in the beam
frame using a small portion of the beam in a 3D box a
few Debye radii on a side. The electron density is initially
uniform. A single gold ion of charge Ze is placed in the
domain at time t = 0. We work in the reference frame of
the ion in which the ion is initially at rest. Any velocity
of the ion relative to the electron distribution is subtracted
from the average electron velocity, giving the electrons a
non-zero drift velocity.

Boundary conditions on fields are periodic. For the par-
ticles, the simplest boundary condition is also periodic, so
particles leaving one side of the box appear on the oppo-
site side. Alternatively, we consider a boundary condition
where any particle leaving the box is removed from the
simulation, and a thermal distribution of electrons with the
proper drift speed enters the box from all sides.

Typical parameters for our runs are given in Table 1. The
z coordinate is used to denote the direction parallel to the
direction of beam propagation. We use (v ix, viy = 0, viz)
for the ion drift velocity with respect to the electrons and
(σvx, σvy , σvz) as the RMS electron velocity. By non-
dimensionalizing the equations of motion, the critical pa-
rameters are ζ, which measures the non-linearity of the
plasma response, R = σvx/σvz , the ratio of transverse to
longitudinal RMS electron velocity, and the normalized ion
drift speeds L = viz/σvz and T = vix/σvx. Electrons
from a particle accelerator typically have a higher trans-
verse RMS velocity σvx compared to the longitudinal ve-
locity σvz . So we expect that R > 1, and take R = 3 as a
typical value.

The problem is simulated in dimensional units. We start
from the electron density ne in Table 1, which fixes the
plasma frequency and time scale. For a particular choice
of the non-dimensional parameters ζ, R, L and T , we set
σvz in order to give the desired ζ, then all other parameters
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Table 1: Typical simulation parameters and relevant dimensionless parameters
Parameter Value Description

ne 1.60× 1016 m−3 Electron density
ωp = (2π)8.98

√
ne 7.14× 109 rad/sec Plasma frequency

2π/ωp 8.8× 10−10 s Plasma period
σvx,σvy 1.6× 105 m/s Transverse RMS electron velocity

σvz 5.4× 104 m/s Longitudinal RMS electron velocity
λD = σvz/ωp 7.6 microns Nominal longitudinal Debye radius
R ≡ σvx/σvz ∼ 3 Ratio of transverse to longitudinal RMS velocity spread
T ≡ vix/σvx 0 to 1.8 Ratio of transverse ion velocity to RMS velocity spread
L ≡ viz/σvz 0 to 1.8 Ratio of longitudinal ion velocity to RMS velocity spread

ζ ≡ Z/(4πneR
2λ3

D) ≤ 0.1 Plasma nonlinearity parameter

are fixed by the choice of R, L and T . Typically, we use
ζ = 0.1 or smaller to remain in the linear regime.

The particles are simulated using electrostatic PIC. At
each time step the field due to the electrons and ions is
calculated, which is then used to move the particles. In
order to reduce noise, we split each electron into many par-
ticles with the same charge to mass ratio. We also use only
half the electrons specified by the density ne, but on top
of each electron we place a positron of the same mass but
opposite charge. This numerical trick reduces noise in the
wake by ensuring that charge density deviations are due
only to the differences between the trajectories of electrons
and positrons.

An alternative binary collision algorithm [7] moves the
electrons and ion by exactly solving the 2-body problem
for each electron-ion pair. This has the advantage of being
able to deal with very close collisions correctly, and is im-
portant to calculate the friction force accurately [7]. How-
ever, in this case we want to resolve the wake, and small
impact parameter collisions have relatively little effect on
the wake. We have seen only minor differences in the wake
using electrostatic PIC versus binary collision algorithm.
Thus, all results presented below use electrostatic PIC.

THE ISOTROPIC TEST CASE

When the electron distribution is isotropic (R = 1) and
the ion at rest with respect to the electrons (T = L = 0),
we have classical Debye shielding. In this case the steady-
state solution is well-known.

Note that in the isotropic case, the typical speed of an
electron is

√
3σvz . Thus, the Debye radius λD as defined

in Table 1 is smaller by a factor of
√

3 than the definition
used in some other works.

A useful metric to check the simulations is the electron
charge perturbation q(α, t) within a sphere of radius αλD ,
centered around the ion. For the steady-state Debye shield-
ing solution, as α → ∞ this charge approaches −Z , ex-
actly canceling out the charge of the ion. The steady-state
charge distribution within a sphere of radius αλD is
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Figure 1: The charge within a sphere using periodic bound-
ary conditions.
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Figure 2: The charge within a sphere using emitting and
absorbing boundary conditions.

q(α) = −Z
[
1− (1 + α)e−α

]
(1)

Fig. 1 shows the evolution of q(α, t) for a VORPAL sim-
ulation compared to the steady state solution (1), where
Z = 79 for a fully-stripped gold ion. In this case we use
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VORPAL with periodic boundary conditions on the fields
and particles. Total charge in the simulation domain is con-
served, so while the charge distribution is correct near the
ion it is incorrect near the edges of the box. Each side of the
box in this case has length 8λD, and the farthest an electron
can be from the ion is 4

√
3λD .

Better results are obtained by destroying particles that
leave the simulation domain. These are replaced by a con-
stant thermal distribution which comes into the domain
with the correct temperature and drift speed. As shown in
Fig. 2, this gives a much better match to the steady-state,
Debye shielding solution.

As the simulation proceeds, electron-positron pairs be-
come separated, and the simulation noise increases. The
technique in Fig. 2 has an additional advantage because the
particles entering the domain begin as correlated electron-
positron pairs (on top of one another).

Figure 3: A transverse cross section of the wake behind a
gold ion, with the color denoting density enhancement.

SIMULATIONS OF FINITE ION
VELOCITY

We now consider electrons with R = 3, with a traverse
ion speed T = 1.8 and L = 0. Because we work in the ion
frame, the electrons are drifting. The moving ion leaves
a wake in the electron distribution, shown as a color con-
tour plot in density in Fig. 3. Fig. 4 shows the longitudinal
profile at the same time, about a quarter of a plasma period.

One parameter of interest is the time when the integrated
wake is maximum, or has the highest peak. This informa-
tion could be used to optimize the length of the modulator

Figure 4: A longitudinal cross section of the wake behind
a gold ion, with the color denoting density enhancement.

section. For a perfectly cold electron distribution this oc-
curs at a quarter of a plasma period. For the simulations in
Figs. 3 and 4, the integrated wake reaches a maximum at
about half a plasma period, but is at 86% of this maximum
at a quarter of a plasma period.

FUTURE WORK

We plan to run additional test cases to explore how the
density perturbations change with ion velocity (T , L). We
will explore the time evolution of the density perturbations.
The density perturbations will then be used as the input to
an FEL code to study the wake amplification. Finally, we
will use the amplified density in the kicker to calculate the
effect back on the hadrons.
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